Deteksi Berita Palsu Menggunakan Metode Random Forest dan Logistic Regression

Authors

  • Nur Ghaniaviyanto Ramadhan Institut Teknologi Telkom Purwokerto
  • Faisal Dharma Adhinata Institut Teknologi Telkom Purwokerto
  • Alon Jala Tirta Segara Institut Teknologi Telkom Purwokerto
  • Diovianto Putra Rakhmadani Institut Teknologi Telkom Purwokerto

DOI:

https://doi.org/10.30865/jurikom.v9i2.3979

Keywords:

News, Detection, Random Forest, Supervised Learning

Abstract

Fake news is information that is presented incorrectly or falsely. Of course, if the spread of fake news continues, it can result in wrong knowledge of the information obtained. One of the efforts to prevent the spread of fake news is by detecting whether the news is genuine or fake in order to provide an explanation to the readers of the related news. This study aims to detect fake news using a supervised learning random forest model. The news dataset used contains 6256 rows of titles that have a fake or real class. The dataset first goes through a cleaning, tokenization, and stemming process to break sentences into words. The results obtained using the random forest model of 84%, this result is higher than using the logistic regression model of 77%.

Author Biographies

Nur Ghaniaviyanto Ramadhan, Institut Teknologi Telkom Purwokerto

Rekayasa Perangkat Lunak

Faisal Dharma Adhinata, Institut Teknologi Telkom Purwokerto

Rekayasa Perangkat Lunak

Alon Jala Tirta Segara, Institut Teknologi Telkom Purwokerto

Rekayasa Perangkat Lunak

Diovianto Putra Rakhmadani, Institut Teknologi Telkom Purwokerto

Bisnis Digital

References

Aphiwongsophon, Supanya, and Prabhas Chongstitvatana. "Detecting fake news with machine learning method." 2018 15th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE, 2018.

Ksieniewicz, Paweł, et al. "Machine learning methods for fake news classification." International Conference on Intelligent Data Engineering and Automated Learning. Springer, Cham, 2019.

Mahir, Ehesas Mia, Saima Akhter, and Mohammad Rezwanul Huq. "Detecting fake news using machine learning and deep learning algorithms." 2019 7th International Conference on Smart Computing & Communications (ICSCC). IEEE, 2019.

Liu, Yang, and Yi-Fang Wu. "Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.

Jeronimo, Caio Libanio Melo, et al. "Fake news classification based on subjective language." Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services. 2019.

Ghosh, Souvick, and Chirag Shah. "Towards automatic fake news classification." Proceedings of the Association for Information Science and Technology 55.1. 805-807. 2018.

Koirala, Abhishek. "COVID-19 fake news classification with deep learning." Preprint 2020.

Al-Ash, Herley Shaori, et al. "Ensemble learning approach on indonesian fake news classification." 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). IEEE, 2019.

Moraes, Marcos Paulo, Jonice de Oliveira Sampaio, and Anderson Cordeiro Charles. "Data mining applied in fake news classification through textual patterns." Proceedings of the 25th Brazillian Symposium on Multimedia and the Web. 2019.

Faustini, Pedro, and Thiago Covões. "Fake news detection using one-class classification." 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2019.

Thota, Aswini, et al. "Fake news detection: a deep learning approach." SMU Data Science Review 1.3. 10. 2018.

Hiramath, Chaitra K., and G. C. Deshpande. "Fake news detection using deep learning techniques." 2019 1st International Conference on Advances in Information Technology (ICAIT). IEEE, 2019.

Rahutomo, Faisal, et al. "Eksperimen Naïve Bayes Pada Deteksi Berita Hoax Berbahasa Indonesia Naïve Bayes’s Experiment On Hoax News Detection In Indonesian Language." vol 23. 1-15. 2019.

Yunanto, Rio, Apriani Puti Purfini, and Angga Prabuwisesa. "Survei Literatur: Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning." Jurnal Manajemen Informatika (JAMIKA) 11.2. 118-130. 2021.

Amiri, Aufa Nabil. Deteksi Berita Palsu Otomatis Berbahasa Indonesia Menggunakan BERT. Diss. Institut Teknologi Sepuluh Nopember, 2021.

Setiawan, Esther Irawati, et al. "Deteksi Validitas Berita pada Media Sosial Twitter dengan Algoritma Naive Bayes." Journal of Intelligent System and Computation 3.2. 55-60. 2021.

Fake or Real News, Available online: https://www.kaggle.com/datasets/jillanisofttech/fake-or-real-news, Diakses 1 April 2022.

Kannan, Subbu, et al. "Preprocessing techniques for text mining." International Journal of Computer Science & Communication Networks 5.1. 7-16. 2014.

Ramadhan, Nur Ghaniaviyanto. "Indonesian Online News Topics Classification using Word2Vec and K-Nearest Neighbor." Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi) 5.6. 1083-1089. 2021.

Ramadhan, Nur Ghaniaviyanto, and Faisal Dharma Adhinata. "Teknik SMOTE dan Gini Score dalam Klasifikasi Kanker Payudara." RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi 9.2. 125-134. 2021.

Ramadhan, Nur Ghaniaviyanto, Ade Romadhony, and Adiwijaya. "Preprocessing Handling to Enhance Detection of Type 2 Diabetes Mellitus based on Random Forest.". 2021.

Kirasich, Kaitlin, Trace Smith, and Bivin Sadler. "Random Forest vs Logistic Regression: Binary Classification for Heterogeneous Datasets." SMU Data Science Review 1.3. 9. 2018.

Additional Files

Published

2022-04-29

How to Cite

Ramadhan, N. G., Adhinata, F. D., Segara, A. J. T., & Rakhmadani, D. P. (2022). Deteksi Berita Palsu Menggunakan Metode Random Forest dan Logistic Regression. JURNAL RISET KOMPUTER (JURIKOM), 9(2), 251−256. https://doi.org/10.30865/jurikom.v9i2.3979

Issue

Section

Articles