Sistem Pendukung Keputusan Penerima Beasiswa Program Indonesia Pintar Menggunakan Metode Algoritma K-Means Clustering

Authors

  • Darlinda Darlinda STMIK Borneo Internasional, Balikpapan
  • Joy Nashar Utamajaya STMIK Borneo Internasional, Balikpapan

DOI:

https://doi.org/10.30865/jurikom.v9i2.3971

Keywords:

Poverty, Data Mining, Clustering, K-Means Algorithm, the Program Indonesia Pintar

Abstract

SDN 020 PPU is one of the elementary schools that receive scholarships from the Program Indonesia Pintar (PIP) every year. The Smart Indonesia Program is a collaboration of three ministries of Kementerian Pendidikan dan Kebudayaan (Kemendikbud), the Kementerian Sosial (Kemensos), and the Kementerian Agama (Kemenag). Program Indonesia Pintar is designed to help school-age children from poor/vulnerable/poor priority families continue to receive education services until they finish secondary education, either through formal education (starting from SD/MI to graduating from SMA/SMK/MA) through this program the government seeks to prevent students from the possibility of dropping out of school, and is expected to attract dropouts to return to continue their education. Based on the results of the evaluation of the implementation of data processing, there are problems in distributing scholarships because there are often complications in proposing the eligibility of scholarship recipients. With these problems, a decision support system is needed to assist the school in determining scholarship recipients using the k-Means clustering algorithm method using Rapidminer studio version 9.10. This study uses 236 student data at SDN 020 PPU which consists of 5 research variables, namely Name, Number of Dependent Parents, Report Value, Occupation and Total Income of Parents. Based on the results of data processing, there are 70 data including cluster 1 with scholarship recipient status right on target, then 118 data including cluster 1 with scholarship recipient status not being targeted. and 48 data belonging to cluster 2 with scholarship recipient status not on target

References

E. Fammaldo and L. Hakim, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Kesejahteraan Keluarga Untuk Program Kartu Indonesia Pintar,†J. Ilm. Teknol. Infomasi Terap., vol. 5, no. 1, pp. 23–31, 2019, doi: 10.33197/jitter.vol5.iss1.2018.249.

B. G. Sudarsono and S. P. Lestari, “Clustering Penerima Beasiswa Yayasan Untuk Mahasiswa Menggunakan Metode K-Means,†J. Media Inform. Budidarma, vol. 5, no. 1, p. 258, 2021, doi: 10.30865/mib.v5i1.2670.

U. Syafiqoh and S. Informasi, “Sistem Pendukung Keputusan Penentuan Pemberian Bantuan Biaya Pendidikan Menggunakan Algoritma K-Means,†pp. 37–42, 2014.

N. A. Manihuruk, M. Zarlis, E. Irawan, and H. S. Tambunan, “Penerapan Data Mining Dalam Mengelompokkan Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 4, no. 1, pp. 29–34, 2020, doi: 10.30865/komik.v4i1.2575.

J. Informatika, S. A. Rahmah, J. Antares, and U. Dharmawangsa, “Beasiswa Yayasan Menggunakan K-Means,†vol. 13, no. 2, pp. 25–30, 2021.

A. E. Wicaksono, “Implementasi Data Mining Dalam Pengelompokan Peserta Didik Di Sekolah Untuk Memprediksi Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means,†J. Teknol. Rekayasa, vol. 21, no. 3, pp. 206–216, 2016, [Online]. Available: http://www.sman16bekasi.sch.id.

H. Mahulae, “Pengelompokan Potensi Produksi Buah-Buahan di Provinsi Sumatera Utara dengan Menerapkan K-Clustering (Studi Kasus : Dinas Tanaman Pangan dan Holtikultura),†JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 312, 2020, doi: 10.30865/jurikom.v7i2.2122.

M. Mardalius, “Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means,†Jurteksi, vol. 4, no. 2, pp. 123–132, 2018, doi: 10.33330/jurteksi.v4i2.36.

M. Ali Hasymi, A. Faisol, and F. Ariwibisono, “Sistem Informasi Geografis Pemetaan Warga Kurang Mampu Di Kelurahan Karang Besuki Menggunakan Metode K-Means Clustering,†JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 284–290, 2021, doi: 10.36040/jati.v5i1.3269.

S. R. Andani, “Penerapan Metode SMART dalam Pengambilan Keputusan Penerima Beasiswa Yayasan AMIK Tunas Bangsa,†J. Sist. dan Teknol. Inf., vol. 7, no. 3, p. 166, 2019, doi: 10.26418/justin.v7i3.30112.

N. Hijriana and M. Rasyidan, “Penerapan Metode Decision Tree Algoritma C4.5 Untuk Seleksi Calon Penerima Beasiswa Tingkat Universitas,†Sains Dan Teknol., vol. 3, no. 1, pp. 9–13, 2017.

B. Rahmat C.T.I. et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,†Semin. Nas. Ris. Kuantitatif Terap. 2017, no. April, pp. 58–60, 2017.

M. M. K-means, “Penerapan Data Mining untuk Clustering Data Penduduk Miskin,†vol. 3, no. 1, pp. 31–37, 2021.

A. Salam, D. Adiatma, and J. Zeniarja, “Implementasi Algoritma K-Means Dalam Pengklasteran untuk Rekomendasi Penerima Beasiswa PPA di UDINUS,†JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 62–68, 2020, doi: 10.33633/joins.v5i1.3350.

L. G. Rady Putra and A. Anggrawan, “Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 205–214, 2021, doi: 10.30812/matrik.v21i1.1554.

Additional Files

Published

2022-04-29

How to Cite

Darlinda, D., & Utamajaya, J. N. (2022). Sistem Pendukung Keputusan Penerima Beasiswa Program Indonesia Pintar Menggunakan Metode Algoritma K-Means Clustering. JURNAL RISET KOMPUTER (JURIKOM), 9(2), 167–175. https://doi.org/10.30865/jurikom.v9i2.3971

Issue

Section

Articles