Pemulihan Citra Berbasis Metode Markov Random Field
DOI:
https://doi.org/10.30865/jurikom.v9i2.3966Keywords:
Digital Image Processing, Image Restoration, Markov Random Field, Energy Function, Stochastic ModelAbstract
Image processing and computer vision today are faced with increasing big data applications. Excessive collection of Image data sometimes can have bad quality due to errors at the time of acquisition or at the time of transmission, so for that problem the method is needed to perform image restoration. Image restoration is a process to make improvements to the image with the aim of obtaining a clean image from noise like the original image. Among the methods that can be used in image restoration, Markov Random Field (MRF) based on a probabilistic representation of image processing problems, namely maximizing the probability size calculated starting from the input data for all candidate solutions can provide a faster sub-optimal solution for image restoration. Based on the implementation this experiment conducted with the noisy test image, the MRF method was capable to improve the noisy image up to 96.75 percent close to the original image without noiseReferences
R.F. Abbas, “Review On Some Methods Used In Image Restorationâ€, International Multidisciplinary Research Journal, Vol. 10, pp. 13-16, 2020, doi: 10.25081/imrj.2020.v10.6113.
D.S. Nurjanah, D. Suhaedi, and E. Harahap, “ Denoising Restorasi Citra Digital Menggunakan Filter Wienerâ€, Jurnal Matematika Unisba, Vol. 15, No, 1, 2016 pp. 1-6.
Chyan, P. and Sumarta, S.C., “Rancang Bangun Mesin Pencari Citra Dengan Pendekatan Temu Balik Berbasis Kontenâ€. TEMATIKA, Journal of Informatics and Information Systems, Vol. 3, No.2, 2015, pp. 55-61.
Chyan, P. and Sumarta, S.C., “ Sistem Temu Balik Citra Berbasis Isi Citra Menggunakan Fitur Warna Dan Jarak Histogramâ€, TEMATIKA: Jurnal Penelitian Teknik Informatika dan Sistem Informasi, Vol. 1, No.2, 2013, pp. 31-38
Pleschberger, M. Schrunner, S. Pilz, Jürgen, “An Explicit Solution for Image Restoration using Markov Random Fieldsâ€, Journal of Signal Processing Systems, Vol. 92, No. 1, pp. 257-267, 2019, doi: 10.1007/s11265-019-01470-9.
Chyan, P, "Image Enhancement Based On Bee Colony Algorithm.", Journal of Engineering and Applied Sciences (JEAS), Vol. 14, No. 1, 2019, pp. 43-49.
Caraffa, Laurent, and Jean-Philippe Tarel. "Markov Random Field Model For Single Image Defogging." IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013.
Latha, H. N., and Bharathi Lokesh. "Denoising And Deblurring By Gauss Markov Random Field: An Alternating Minimization Convex Prior." International Journal of Science and Research, 2019, pp.1669-1672.
Kindermann, R., & Snell, J.L. (1980). Markov Random Fields And Their Applications. American mathematical society, USA.
Wijaya, R.S.D., Suksmono, A.B. and Mengko, T.L., “Segmentasi Citra Kanker Serviks Menggunakan Markov Random Field Dan Algoritma K-Meansâ€. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), Vol. 5, No.1, 2021, pp.139-147.
Comer, M. and Simmons, J., “The Markov Random Field In Materials Applications: A Synoptic View For Signal Processing And Materials Readersâ€. IEEE Signal Processing Magazine, Vol.39, No.1, 2021, pp.16-24.
Sutama, V.M., Magdalena, R. and Wijayanto, I., “Identifikasi Objek Dominan Citra Digital Menggunakan Metode Markov Random Fieldâ€, eProceedings of Engineering, Vol. 5, No.3, 2018



