Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner

Authors

  • Khairunnissa Fanny Irnanda STIKOM Tunas Bangsa, Pematangsiantar
  • Agus Perdana Windarto STIKOM Tunas Bangsa, Pematangsiantar
  • Irfan Sudahri Damanik STIKOM Tunas Bangsa, Pematangsiantar

DOI:

https://doi.org/10.30865/jurikom.v9i1.3836

Keywords:

Backpropagation, Artificial Neural Networks, Particle Swarm Optimization, RapidMiner, Root Mean Square Error (RMSE)

Abstract

Backpropagation is a method of Artificial Neural Networks that is quite reliable in solving prediction problems (forecasting). However, in its application, this algorithm still has weaknesses such as optimizing the artificial neural network weights to avoid local minimums, the problem of long training times to achieve convergence and the process of determining the right parameters (learning rate and momentum) in the training process. The purpose of this research is to solve this problem by using Particle Swarm Optimization (PSO) which is a simple and reliable optimization algorithm to solve optimization problems. The data source is obtained from the site sumut.bps.go.id. There are 5 network architecture models used in this study, including 2-5-1, 2-7-1, 2-9-1, 2-11-1 and 2-13-1. The results of trials conducted with Rapid Miner software, the best architectural model is the 2-9-1 model with a total RMSE of 0.056 +/- 0.000 in the implementation of Backpropagation, while in the implementation of Backpropagation + particle swarm optimization the amount of RMSE is 0.055 +/- 0.000. The smaller the RMSE (Root Mean Squared Error), the better the model

References

A. Veno, L. A. Safitri, and T. Prijanto, “Triangle 1,†vol. 1, no. 1, pp. 16–29, 2020.

T. W. Khusniyah, “Prediksi Nilai Tukar Petani Menggunakan Jaringan Syaraf Tiruan Backpropagation,†vol. 3, no. 1, pp. 11–18, 2016.

A. P. Windarto, P. Studi, and S. Informasi, “IMPLEMENTASI JST DALAM MENENTUKAN,†no. 1, pp. 12–23, 2017.

I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,†vol. 17, no. 3, pp. 302–311, 2018.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,†vol. 2, pp. 37–44, 2019.

B. D. Hakim and A. A. Supianto, “Peramalan Debit Bendungan Dengan Menggunakan Metode Backpropagation dan Algoritme Genetika,†vol. 3, no. 1, pp. 51–58, 2019.

N. Setyawan, E. A. Hak, and Zulfatman, “Multitek Indonesia : Jurnal Ilmiah,†vol. 6223, no. 2, pp. 110–120, 2019.

T. Arifin, “Implementasi Algoritma PSO Dan Teknik Bagging Untuk Klasifikasi Sel Pap Smear,†vol. 4, no. 2, pp. 155–162, 2017.

M. B. Setiawan and A. Hakim, “INDEKS PEMBANGUNAN MANUSIA INDONESIA Mohammad Bhakti Setiawan & Abdul Hakim,†pp. 18–26, 2008.

B. S. Ginting and F. Ramadhan, “PERANCANGAN GAME BECOME A KING BERBASIS Budi Serasi Ginting , 2 Fajar Ramadhan,†vol. 2, no. 1, pp. 12–21, 2018.

E. P. Cynthia and E. Ismanto, “Eka Pandu Cynthia, 2) Edi Ismanto,†vol. 2, no. 2, pp. 83–98, 2017.

S. R. Asriningtias, “Optimasi Training Neural Network Menggunakan Hybrid Adaptive Mutation,†vol. 9, no. 1, pp. 79–84, 2017.

D. R. Anjasmara, “Optimasi,†2017.

B. R. C. T. I et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,†no. April, pp. 58–62, 2017.

Additional Files

Published

2022-03-02

How to Cite

Irnanda, K. F., Windarto, A. P., & Damanik, I. S. (2022). Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner. JURNAL RISET KOMPUTER (JURIKOM), 9(1), 122–130. https://doi.org/10.30865/jurikom.v9i1.3836