Pemilihan Model Arsitektur Terbaik Dengan Mengoptimasi Learning Rate Pada Neural Network Backpropagation
DOI:
https://doi.org/10.30865/jurikom.v9i1.3834Keywords:
Neural Network, Backpropagation, Optimization, Learning Rate, Selection of the Best Architecture, MATLABAbstract
Backpropagation is one of the methods contained in a neural network that is able to train dynamic networks using mathematical knowledge based on architectural models that have been developed in detail and systematically. Backpropagation itself is able to accommodate a lot of information that serves as a useful experience. However, the Backpropagation Algorithm tends to be slow to achieve convergence in obtaining optimum accuracy and requires large training data and the optimization used is less efficient. The purpose of this research is to optimize the learning rate on backpropagation neural networks. Source of data obtained from CV. Bona Tani Hatonduhan. There are 3 network architecture models used in this study, namely 2-51, 2-6-1, and 2-7-1 with learning rates of 0.1, 0.2, and 0.3. the results of trials carried out with MATLAB software produced the best architectural model, namely the 2-7-1 model with a learning rate of 0.3 with an accuracy of 83%. Based on this background, it is hoped that the results of the research can help in the process by optimizing the learning rate of the backpropagation Neural Network on the selection of the best architecture.
References
Y. Andriani, A. Wanto, and H. Handrizal, “Jaringan Saraf Tiruan dalam Memprediksi Produksi Kelapa Sawit di PT. KRE Menggunakan Algoritma Levenberg Marquardt,†Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 249, 2019, doi: 10.30645/senaris.v1i0.30.
M. H. Dar, “Penerapan Metode Backpropagation Neural Network Untuk Memprediksi Produksi Air,†Maj. Ilm. INTI, vol. 12, no. 2, pp. 203–208, 2017.
A. Wanto, “Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts,†J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 3, pp. 370–380, 2018, doi: 10.25077/teknosi.v3i3.2017.370-380.
M. Khairani, “Improvisasi Backpropagation menggunakan penerapan adaptive learning rate dan parallel training,†TECHSI - J. Penelit. Tek. Inform., vol. 4, no. 1, pp. 157–172, 2014.
L. Manalu, A. P. Harianja, T. Informatika, U. St, J. Setia, and B. No, “Artificial Intelligence ( AI ) Susun Angka Bentuk Kotak 4 X 4 Menggunakan Pencarian Heuristik Dengan Algoritma Bfs,†vol. 03, no. 479, pp. 6–11, 2018.
E. Y. Puspaningrum and L. S. Qolby, “Optimasi jaringan saraf tiruan untuk diagnosis penyakit diabetes indian pima,†TEKN0LOGI, vol. 6, no. 1, pp. 49–54, 2016.
A. P. Parlina, Iin; Wanto, Anjar; Windarto, “Pemilihan Model Arsitektur BackPropogration terbaik pada Prediksi Ekspor Industri Non Migas,†Semin. Nas. Apl. Teknol. Inf. 2019, pp. A8–A16, 2019.
S. P. Siregar, A. Wanto, and Z. M. Nasution, “Analisis Akurasi Arsitektur JST Berdasarkan Jumlah Penduduk Pada Kabupaten / Kota di Sumatera Utara,†Sensasi 2018, no. Juli, pp. 526–536, 2018.
F. Aofa, “SISTEM DETEKSI DINI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN ADAPTIVE LEARNING RATE DAN OPTIMASI BOBOT PARTICLE SWARM OPTIMIZATION,†2017.
L. Sinaga, E. Irawan, and W. Saputra, “Penerapan Jaringan Saraf Tiruan Metode Backpropogation Dalam Memprediksi Distribusi Air Pada PDAM Tirtauli Kota Pematangsiantar,†vol. 2, pp. 161–168, 2020.
 
						



 
 