Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN

Authors

  • Rizki Syafaat Amardita Universitas Telkom, Bandung
  • Adiwijaya Adiwijaya Universitas Telkom, Bandung
  • Mahendra Dwifebri Purbolaksono Universitas Telkom, Bandung

DOI:

https://doi.org/10.30865/jurikom.v9i1.3793

Keywords:

Sentiment Analysis, Preprocessing, TF-IDF, K-Nearest Neighbor, Classification

Abstract

As the times move forward, technologies are following to develop with the times, especially internet technology. Nowadays, people can find out information about shopping center via the Internet. One of the best-known shopping centers in Bandung is Paris van Java resort lifestyle place. The person's consideration of going to the shopping center is based on the location and opinions of the person who once visited that shop. With a huge amount of opinion and an underlying amount of information that is of great value causes the information to become dangerous if the person misunderstood it. With all these problems, sentiment analysis one of the solution that can prevent the problems of these misunderstanding, in which sentiment analysis works to analyze each text to determine the level of positive or negative sentiment values. In this study, the sentiment analysis dataset goes first to the preprocessing stage, extraction of the Term Frequency-Inverse Document Frequency (TF-IDF) feature then classified using the K-Nearest Neighbor method, The K-Nearest Neighbor method was chosen because this method is one method that can classify text and data, besides K-Nearest neighbor method has a good classification accuracy where the classification process is easy and quite simple in its implementation. With a system that built using TF-IDF Unigram and Euclidean Distance, the best accuracy value is 88.29%.

References

R. S. Murti and S. Al-faraby, “Analisis Sentimen pada Ulasan Film Menggunakan Word2Vec dan Long Short-Term Mermory ( LSTM ) Pendahuluan Studi Terkait,†Telkom Univ., 2019.

R. Bintang Purnomoputra and U. Novia Wisesty, “Sentiment Analysis of Movie Reviews using Naïve Bayes Method with Gini Index Feature Selection,†Open Access J Data Sci Appl, vol. 2, no. 2, pp. 85–094, 2019, doi: 10.34818/JDSA.2019.2.36.

O. Somantri and D. Apriliani, “Support Vector Machine Berbasis Feature Selection Untuk Sentiment Analysis Kepuasan Pelanggan Terhadap Pelayanan Warung dan Restoran Kuliner Kota Tegal,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 537, 2018, doi: 10.25126/jtiik.201855867.

C. R. Fink, D. S. Chou, J. J. Kopecky, and A. J. Llorens, “Coarse- and fine-grained sentiment analysis of social media text,†Johns Hopkins APL Tech. Dig. (Applied Phys. Lab., vol. 30, no. 1, pp. 22–30, 2011.

R. I. Pristiyanti, M. A. Fauzi, and L. Muflikhah, “Sentiment Analysis Peringkasan Review Film Menggunakan Metode Information Gain dan K-Nearest Neighbor,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 3, pp. 1179–1186, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1140.

A. Nugraha, pratama dwi,, Said al faraby, “Klasifikasi Dokumen Menggunakan Metode Knn Dengan Information Gain,†eProceedings Eng., vol. 5, no. 1, pp. 1541–1550, 2018.

R. A. Hamad, S. M. Alqahtani, and M. T. Torres, “Emotion and polarity prediction from Twitter,†Proc. Comput. Conf. 2017, vol. 2018-Janua, no. July, pp. 297–306, 2018, doi: 10.1109/SAI.2017.8252118.

D. Sianturi, “UNIVERSITAS SUMATERA UTARA Poliklinik UNIVERSITAS SUMATERA UTARA,†J. Pembang. Wil. Kota, vol. 1, no. 3, pp. 82–91, 2021.

B. Trstenjak, S. Mikac, and D. Donko, “KNN with TF-IDF based framework for text categorization,†Procedia Eng., vol. 69, no. October 2015, pp. 1356–1364, 2014, doi: 10.1016/j.proeng.2014.03.129.

L. D. Utami, “Komparasi Algoritma Klasifikasi Pada Analisis Review Hotel,†J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 261, 2018, doi: 10.33480/pilar.v14i2.1023.

I. Fahrur Rozi, A. Taufika Firdausi, and K. Islamiyah, “Analisis Sentimen Pada Twitter Mengenai Pasca Bencana Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram,†J. Inform. Polinema, vol. 6, no. 2, pp. 33–39, 2020, doi: 10.33795/jip.v6i2.316.

A. M. Zuhdi, E. Utami, and S. Raharjo, “Analisis sentiment twitter terhadap capres Indonesia 2019 dengan metode K-NN,†J. Inf. Politek. Indonusa Surakarta, vol. 5, pp. 1–7, 2019.

N. O. F. Daeli and Adiwijaya, “Sentiment Analysis on Movie Reviews Using Information Gain and K-Nearest Neighbor,†J. Data Sci. Its Appl., vol. 3, no. 1, pp. 1–7, 2020, doi: 10.34818/JDSA.2020.3.22.

S. Mujilahwati, “Pre-Processing Text Mining Pada Data Twitter,†Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. Sentika, pp. 2089–9815, 2016.

I. A. Shaufiah, Imanudin, “Android Short Messages Filtering for Bahasa Using,†Arpn Jeas, vol. 11, no. 23, pp. 13617–13622, 2016.

N. A. Shaltout, M. El-Hefnawi, A. Rafea, and A. Moustafa, “Information gain as a feature selection method for the efficient classification of influenza based on viral hosts,†Lect. Notes Eng. Comput. Sci., vol. 1, no. July, pp. 625–631, 2014.

P. Jan and W. Gotama, “Pengenalan Pembelajaran Mesin dan Deep Learning Jan Wira Gotama Putra Pengenalan Konsep Pembelajaran Mesin dan Deep Learning,†no. July, pp. 1–199, 2018, [Online]. Available: https://www.researchgate.net/publication/323700644.

J. Ramos, “Using TF-IDF to Determine Word Relevance in Document Queries,†Proc. first Instr. Conf. Mach. Learn., pp. 29–48, 2003.

T. Setiyorini and R. T. Asmono, “Implementation Of K-Nearest Neighbor And Gini Index Method In Classification Of Student Performance,†J. Techno Nusa Mandiri, vol. 16, no. 2, pp. 121–126, 2019, [Online]. Available: http://ejournal.nusamandiri.ac.id/index.php/techno/article/view/747.

S. A. Naufal, A. Adiwijaya, and W. Astuti, “Analisis Perbandingan Klasifikasi Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN) untuk Deteksi Kanker dengan Data Microarray,†JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 162, 2020, doi: 10.30865/jurikom.v7i1.2014.

H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,†IEEE/CAA J. Autom. Sin., vol. 6, no. 3, pp. 703–715, 2019, doi: 10.1109/JAS.2019.1911447.

Additional Files

Published

2022-02-25

How to Cite

Amardita, R. S., Adiwijaya, A., & Purbolaksono, M. D. (2022). Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN. JURNAL RISET KOMPUTER (JURIKOM), 9(1), 62–68. https://doi.org/10.30865/jurikom.v9i1.3793