Klasterisasi Desa dengan Menggunakan Algoritma K-Means pada Data Potensi Desa
DOI:
https://doi.org/10.30865/jurikom.v8i6.3724Keywords:
Clustering, The Developing Village Index, K-Means, Village Potential DataAbstract
The Developing Village Index (Indeks Desa Membangun) is a composite index compiled based on three indices, namely the Social Resilience Index, the Economic Resilience Index and the Village Ecological Index. Based on the Developing Village Index, there are 5 classifications of villages, namely Independent Villages, Developed Villages, Developing Villages, Underdeveloped Villages, and Very Underdeveloped Villages. In line with that, the Central Statistics Agency also issued a Village Development Index (Indeks Pembangunan Desa) to show the classification of the village. This study aims to determine village clustering using the K-Means Algorithm on the 2020 Village Potential (Podes) data, especially on the economic dimension. K-Means is a non-hierarchical data clustering method that can partition data into two or more groups. The number of clusters is determined based on the number of The Developing Village Index statuses, which are 5 clusters. The results of 6 iterations of calculations using the K-Means algorithm show that cluster 1 is grouped into the status of Very Underdeveloped Villages as many as 8 Villages. Then in cluster 2 it is grouped as Underdeveloped Villages as many as 3 Villages. Furthermore, in cluster 3, it is grouped as Developing Villages as many as 83,987 Villages. In cluster 4, they are grouped as Developed Villages as many as 24 Villages. Then in cluster 5 it is grouped as Independent Villages as many as 16 Villages
References
A. Mahmud, A. Pangestika, A. P. Ramadhanty, G. M. Putra, G. S. N. D. S. Putri, and R. Nooraeni, “Klasifikasi Status Desa/Kelurahan DIY (Yogyakarta) Menggunakan Model Decision Tree (Studi Kasus Data Praktik Kerja Lapangan Politeknik Statistika STIS Tahun 2020),†Engineering, MAthematics and Computer Science (EMACS) Journal, vol. 3, no. 1, pp. 33–41, Feb. 2021, doi: 10.21512/emacsjournal.v3i1.6787.
N. S. Ratnadila, “Perencanaan Skenario untuk Pembangunan Desa Tertinggal: Sebuah Telaah Kritis,†Jurnal Penyuluhan Perikanan dan Kelautan, vol. 12, no. 2, pp. 111–128, Aug. 2018, doi: 10.33378/jppik.v12i2.104.
M. Sukarno, Prosiding Seminar Edusainstech Analisis Pengembangan Potensi Desa Berbasis Indeks Membangun Desa (IDM) (Studi Kasus: Desa Ponggok, Kecamatan Palohharjo, Kabupaten Klaten).
Suroso, “Kebijakan Pembangunan Desa Tertinggal Berbasis Indeks Desa Membangun (IDM) dan Potensi Lokal The Development Policy for Under-Developed Villages Based on IDM and Local Potential,†2020. [Online]. Available: http://
F. Xaverius, “PERKEMBANGAN DESA BERDASARKAN INDEKS DESA MEMBANGUN DI KABUPATEN MEMPAWAH VILLAGE PROGRESS BY VILLAGE DEVELOPING INDEX IN MEMPAWAH REGENCY,†vol. 7, no. 1, pp. 10–20, 2021.
S. Setiawan, “ANALISIS CLUSTER MENGGUNAKAN ALGORITMA K-MEANS UNTUK MENGETAHUI KEMAMPUAN PEGAWAI DIBIDANG IT PADA CV. ROXED LTD,†Jurnal Pelita Informatika, vol. 7, no. 3, 2019.
S. F. Susilo, A. Jamaludin, and I. Purnamasari, “Pengelompokan Desa Menggunakan K-Means Untuk Penyelenggaraan Penanggulangan Bencana Banjir,†JOINS (Journal of Information System), vol. 5, no. 2, pp. 156–167, Nov. 2020, doi: 10.33633/joins.v5i2.3709.
S. Regina, E. Sutinah, and N. Agustina, “Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 573, Apr. 2021, doi: 10.30865/mib.v5i2.2909.
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 1, p. 51, Jan. 2020, doi: 10.30865/mib.v4i1.1784.
M. Gading Sadewo, A. Eriza, A. Perdana Windarto, and D. Hartama, Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) Algoritma K-Means Dalam Mengelompokkan Desa/Kelurahan Menurut Keberadaan Keluarga Pengguna Listrik dan Sumber Penerangan Jalan Utama Berdasarkan Provinsi. [Online]. Available: https://www.bps.go.id.
G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,†Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, pp. 17–24, Apr. 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.
Y. Kusnadi and M. S. Putri, “Clustering Menggunakan Metode K-Means Untuk Menentukan Prioritas Penerima Bantuan Bedah Rumah (Studi Kasus : Desa Ciomas Bogor),†Jurnal Teknologi Informatika dan Komputer, vol. 7, no. 1, pp. 17–24, Mar. 2021, doi: 10.37012/jtik.v7i1.498.
N. Anissa, “PENGGUNAAN METODE Z SCORE UNTUK MEMPREDIKSI KEMUNGKINAN KEBANGKRUTAN PADA PT MITRA ADIPERKASA Tbk.â€
A. Claudio et al., “ANALISIS MODEL ALTMAN (Z-SCORE) DALAM MENGUKUR KINERJA KEUANGAN UNTUK MEMPREDIKSI KEBANGKRUTAN PADA PERUSAHAAN MANUFAKTUR SEKTOR INDUSTRI BARANG KONSUMSI DI BURSA EFEK INDONESIA (BEI) PERIODE 2010-2014,†2017.
Basri and Syarli, “AHP-STANDAR SCORE: PENDEKATAN BARU DALAM SISTEM PEMERINGKATAN,†Jurnal Keteknikan dan Sains (JUTEKS) – LPPM UNHAS, vol. 1, no. 1, 2018.
T. Muflifah, J. Akuntansi, and F. Ekonomi, “PENGGUNAAN METODE ALTMAN Z-SCORE UNTUK MEMPREDIKSI KEBANGKRUTAN PADA PERUSAHAAN FOOD AND BEVERAGES YANG TERDAFTAR DI BURSA EFEK INIDONESIA.â€
N. Putu, E. Merliana, and A. J. Santoso, PROSIDING SEMINAR NASIONAL MULTI DISIPLIN ILMU & CALL FOR PAPERS UNISBANK (SENDI_U) Kajian Multi Disiplin Ilmu untuk Mewujudkan Poros Maritim dalam Pembangunan Ekonomi Berbasis Kesejahteraan Rakyat ANALISA PENENTUAN JUMLAH CLUSTER TERBAIK PADA METODE K-MEANS CLUSTERING.
N. Mara and N. S. Intisari, “PENGKLASIFIKASIAN KARAKTERISTIK DENGAN METODE K-MEANS CLUSTER ANALYSIS,†2013.



