Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree

Authors

  • Khamim Surya Hadi Kusuma Al Atros STMIK IKMI, Cirebon
  • Abdul Robi Padri STMIK IKMI, Cirebon
  • Odi Nurdiawan STMIK IKMI, Cirebon
  • Ahmad Faqih STMIK IKMI, Cirebon
  • Saeful Anwar STMIK IKMI, Cirebon

DOI:

https://doi.org/10.30865/jurikom.v8i6.3680

Keywords:

Library, K-Means, Decission Tree, Clustrering, Classification

Abstract

Riyadlul Muta'allimin Elementary School Library is one of the support units in the school's academic activities. During times like these, students are very difficult in accessing the library in school. Therefore, the school applies an Online Library, so those students and teachers who can access the library do not need to flock to school. Online libraries that have been implemented need to do an evaluation of user satisfaction because this is a new thing for Riyadlul Muta'allimin Elementary School. Satisfaction analysis can be done by the K-Means method with a decision tree. K-Means is used to group data that will be converted into labels. It is further classified using a decision tree. Based on the analysis, the prediction of cluster 1 with true cluster 1 of 48 items, true cluster 0 and true cluster 0 there are no items, then the class precision is 100%

References

R. Setyaningrum and Y. Mulyanto, “Pengembangan Sistem Informasi Perpustakaan Pada Universitas Teknologi Sumbawa Berbasis Android,†J. Tambora, vol. 3, no. 2, pp. 26–37, 2019.

K. D. R Sianipar, S. Wanti Siahaan, M. Siregar, and P. R. Fikrul Ilmi Zer, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Kepuasan Pembelajaran Online Pada Masa Pandemi Covid-19,†J. Teknol. Inf., vol. 4, no. 1, pp. 101–105, 2020.

D. A. Silitonga, A. P. Windarto, and D. Hartama, “Penerapan Metode K-Medoid pada Pengelompokan Rumah Tangga Dalam Perlakuan Memilah Sampah Menurut Provinsi,†Semin. Nas. Sains Teknol. Inf. SENSASI 2019 ISBN, pp. 313–318, 2019.

R. M. Eki, “Analisis Kepuasan Pelanggan Menggunakan Algoritma C4 . 5,†Fak. Ilmu Komput., vol. 3, no. 2, pp. 1–14, 2017.

S. M. Putri and S. A. Arnomo, “Penerapan Algoritma C4.5 Untuk Prediksi Kualitas Pelayanan Terhadap Kepuasan Konsumen (Studi Kasus : Hinet Batam),†J. Inf. Syst. Res., vol. 1, no. 2, pp. 70–76, 2020.

A. Sarker, S. M. Shamim, M. Shahiduz, Z. M. Rahman, M. Shahiduz Zama, and M. Rahman, “Employee’s Performance Analysis and Prediction using K-Means Clustering & Decision Tree Algorithm Mawlana Bhashani Science and Technology University Employee’s Performance Analysis and Prediction using K-Means Clustering & Decision Tree Algorithm,†Type Double Blind Peer Rev. Int. Res. J. Softw. Data Eng. Glob. J. Comput. Sci. Technol. C, vol. 18, no. 1, 2018.

S. Kusumadewi and I. Ruspita, “Penerapan Metode Inferensi Backward Chaining Dalam Sistem Pakar Pemilihan Obat Untuk Pasien Gigi Dengan Penyakit Sistemik,†J. Inform. dan Komputer) Akreditasi KEMENRISTEKDIKTI, vol. 3, no. 2, pp. 92–100, 2020, doi: 10.33387/jiko.

F. Wang, Q. Wang, F. Nie, Z. Li, W. Yu, and F. Ren, “A linear multivariate binary decision tree classifier based on K-means splitting,†Pattern Recognit., vol. 107, no. June, p. 107521, 2020, doi: 10.1016/j.patcog.2020.107521.

J. Eska, “Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, 2018, doi: 10.31227/osf.io/x6svc.

P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,†Innov. Res. Informatics, vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.

Additional Files

Published

2021-12-30

How to Cite

Kusuma Al Atros, K. S. H., Padri, A. R., Nurdiawan, O., Faqih, A., & Anwar, S. (2021). Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree. JURNAL RISET KOMPUTER (JURIKOM), 8(6), 323–329. https://doi.org/10.30865/jurikom.v8i6.3680