Analisis Penerimaan Vaksin Covid-19 Berbasis Fuzzy Clustering Machine Learning di Provinsi Riau
DOI:
https://doi.org/10.30865/jurikom.v8i6.3636Keywords:
Clustering, Covid-19, Data Mining, Fuzzy C-Means, Silhoutte Index (SI)Abstract
Corona Virus Disease 2019 or Covid-19 is called global because it is spreading rapidly around the world, increasing cases and deaths, and lack of treatment and vaccines. Seeing rapid spread of Covid-19 and dangers will arise if not handled immediately, One of the most likely ways to prevent the spread of this virus is develop a vaccine. The Head of the Manpower and Transmigration Office of DKI Jakarta Province Issues Decree (SK) No. 1972 of 2021 concerning the Covid-19 Prevention and Control Protocol in Offices or State-Owned Enterprises. Company leaders only allow the implementation of Work From Office (WFO) to workers who have been vaccinated against Covid-19 at least the first dose. One of the companies that need vaccines for workers is PT. Perkebunan Nusantara V or PTPN V because the number of Covid-19 cases in PTPN V is increasing. Based on this case, this research will model or group Covid-19 vaccine data at PTPN V using the Fuzzy C-Means algorithm. The attributes used in this study were Gender, Age, Unit of Work and Vaccine Status. The best cluster results obtained are 5 clusters, the most cluster in cluster 2 there are 3574 persons, and the cluster which has the least number of products is cluster 4 with 18 person. The result of testing the validity of the Silhouette Index (SI) value is 0.1541, thus the quality of the cluster is still far from reaching the optimal word.
References
Khofifah Putriyani, T. Wahyuningrum, and Y. Dwi Prasetyo, “Prediksi Jumlah Produksi Akibat Penyebaran Covid-19 Menggunakan Metode Fuzzy Takagi-Sugeno,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 220–230, 2021, doi: 10.29207/resti.v5i2.2973.
R. Ayunda, V. Kosasih, and H. S. Disemadi, “Perlindungan Hukum Bagi Masyarakat Terhadap Efek Samping Pasca Pelaksanaan Vaksinasi Covid-19 Di Indonesia,†Nusant. J. Ilmu Pengetah. Sos., vol. 7, no. 2, pp. 408–420, 2020.
E. Nufa, “Analisis Klasifikasi Sentimen Tentang Pro Dan Kontra[1] E. Nufa, ‘Analisis Klasifikasi Sentimen Tentang Pro Dan Kontra Masyarakat Indonesia Terhadap Vaksin Covid-19 Pada Media,’ no. May, p. 2, 2021. Masyarakat Indonesia Terhadap Vaksin Covid-19 Pada Media,†no. May, p. 2, 2021.
F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,†Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020, [Online]. Available: https://inohim.esaunggul.ac.id/index.php/INO/article/view/223/175.
A. Kriswibowo, J. K. P. Prameswari, and A. G. Baskoro, “Analisis Kepercayaan Publik Terhadap Kebijakan Vaksinasi Covid-19 Di Kota Surabaya,†J. Publicuho, vol. 4, no. 2, pp. 326–344, 2021, doi: 10.35817/jpu.v4i2.17912.
T. 19, “PERILAKU PENCEGAHAN COVID-19 DI LINGKUNGAN RUMAH TANGGA DI DESA GADUNGAN TABANAN BALI,†vol. 7, no. 2, p. 6, 2021.
Fitriani Pramita Gurning, Laili Komariah Siagian, Ika Wiranti, Shinta Devi, and Wahyulinar Atika, “Kebijakan Pelaksanaan Vaksinasi Covid-19 Di Kota Medan Tahun 2020,†J. Kesehat., vol. 10, no. 1, pp. 43–50, 2021, doi: 10.37048/kesehatan.v10i1.326.
H. Hartaty, “Pengaruh Tingkat Pengetahuan Ibu Tentang Imunisasi Pada Bayi Di Wilayah Kerja Puskesmas Batua Kota Makassar,†J. Ilm. Kesehat. Sandi Husada, vol. 5, no. 2, pp. 13–32, 2018, doi: 10.35816/jiskh.v5i2.29.
R. A. Sukmana, M. I. Iyansyah, B. A. Wijaya, and M. F. Kurniawati, “Implementasi Strategi Komunikasi Kesehatan dalam Meyakinkan Masyarakat untuk Pelaksanaan Vaksinasi COVID-19 di Kabupaten Barito Kuala,†J. Sains Sosio Hum., vol. 5, no. 1, pp. 409–419, 2021, doi: 10.22437/jssh.v5i1.14153.
A. Mayssara A. Abo Hassanin Supervised, “STRATEGI MEDIA RELATIONS HUMAS PT,PERKEBUNAN NUSANTARA V PEKANBARU ( PTPN V) PEKANBARU DALAM MENINGKATKAN CITRA POSITIF,†Pap. Knowl. . Towar. a Media Hist. Doc., vol. 3, no. 2, pp. 1–13, 2014.
L. Siburian, “Data Mining Memprediksi Kebutuhan Vaksin Imunisasi dengan Menggunakan Metode Naive Bayes ( Studi kasus UPT Puskesmas Teladan ),†vol. 1, no. 5, pp. 282–290, 2021.
N. L. G. P. Suwirmayanti, “Penerapan Metode Fuzzy C-Means Untuk Pengelompokan Data Kredit,†STMIK Pontianak Online Proc., pp. 390–395, 2018.
D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, “Implementasi Fuzzy C-Means Clustering Dalam Implementation Of Fuzzy C-Means Clustering In,†vol. 11, pp. 1–12, 2017.
S. Kasus, D. Lubuk, A. Besar, A. M. M, H. Sofyan, and M. Subianto, “Perbandingan Metode Fuzzy C-Means ( Fcm ) Dan Fuzzy Gustafson-Kessel ( Fgk ) Menggunakan Data Citra Satelit Quickbird,†J. Mat. 00 01–05, vol. 00, pp. 1–5, 2013.
A. Ahmadi and S. Hartati, “Penerapan Fuzzy C-Means dalam Sistem Pendukung Keputusan untuk Penentuan Penerima Bantuan Langsung Masyarakat ( BLM ) PNPM- MPd ( Studi Kasus PNPM-MPd Kec . Ngadirojo Kab . Pacitan ) 2007 Pemerintah Indonesia mencanangkan Program Nasional Pemberdayaan Mas,†Berk. MIPA, vol. 23, no. 3, pp. 264–273, 2013.
N. Agustina and P. Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018, doi: 10.29207/resti.v2i3.492.
A. Jaini, Mustakim, A. W. Syaputri, T. Qurahman, and S. T. Rizaldi, “Perbandingan Algoritma Fuzzy C-Means dan K-Medoids untuk Pengelompokan Data Penjualan pada 212 Mart,†Semin. Nas. Teknol. Informasi, Komun. dan Ind. 12, no. 2012, pp. 172–179, 2020.
P. D. W. Ayu, “Perbandingan Kinerja Fuzzy C-Means dan DBSCAN dalam Segmentasi Citra USG Kepala Janin,†J. Sist. dan Inform., vol. 9, no. 2, pp. 79–85, 2015.
A. Ramadhan, Mustakim, and R. Handinata, “Implementasi Algoritma Fuzzy C Means Dan Moora Untuk Pengelompokan Dan Penentuan Wilayah Penanggulangan Bencana Banjir,†no. November, p. Pekanbaru, 2019.
M. S. Yang and Y. Nataliani, “Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters,†Pattern Recognit., vol. 71, pp. 45–59, 2017, doi: 10.1016/j.patcog.2017.05.017.
R. Rustiyan and M. Mustakim, “Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 171, 2018, doi: 10.25126/jtiik.201852605.
A. F. Khairati, A. . Adlina, G. . Hertono, and B. . Handari, “Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA,†Prism. Pros. Semin. Nas. Mat., vol. 2, pp. 161–170, 2019, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/28906.
L. Saletti-cuesta et al., “Pemberian Vaksinasi Covid-19 Kepada Masyarakat Sebagai Wujud Pemenuhan Hak Asasi Manusia Di Bidang Kesehatan,†Sustain., vol. 4, no. 1, pp. 1–9, 2020, [Online]. Available: https://pesquisa.bvsalud.org/portal/resource/en/mdl-20203177951%0Ahttp://dx.doi.org/10.1038/s41562-020-0887-9%0Ahttp://dx.doi.org/10.1038/s41562-020-0884-z%0Ahttps://doi.org/10.1080/13669877.2020.1758193%0Ahttp://sersc.org/journals/index.php/IJAST/article.
S. Schaffer Deroo, N. J. Pudalov, and L. Y. Fu, “Planning for a COVID-19 Vaccination Program,†JAMA - J. Am. Med. Assoc., vol. 323, no. 24, pp. 2458–2459, 2020, doi: 10.1001/jama.2020.8711.
E. Kartikawati and M. Mayarni, “Edukasi Vaksinasi Covid-19 Bagi Kelompok Aisyiah Ranting Kukusan Depok,†SELAPARANG J. Pengabdi. Masy. Berkemajuan, vol. 4, no. 3, p. 650, 2021, doi: 10.31764/jpmb.v4i3.5182.



