Comparative Analysis of Apriori Algorithm and Hash-Based Algorithm in Market Basket Analysis
DOI:
https://doi.org/10.30865/jurikom.v8i6.3574Keywords:
Data Mining, Association Rules, Market Basket Analysis, Apriori Algorithm, Hash-Based Algorithm, Rapid MinerAbstract
Grocery stores are now experiencing competition in the business world that is getting tighter, making businesses have to think hard in developing strategies to face competition. In developing strategies that benefit companies can take advantage of information technology. Information technology can help business companies in conducting their business. In this case, business companies can utilize the data generated by information systems to assist in decision making if processed correctly; such data can produce valuable information. Data Mining is the process of using artificial intelligence mathematical statistics techniques and Machine Learning to extract and identify useful information and related knowledge from various large databases/ Data Warehouse (Kennedi Tampubolon, 2013).  In this study, researchers used a priori algorithm and Hash-Based Algorithm to determine consumer spending patterns or consumer shopping cart data used as much as 1023 transaction data with a minimum value of 0.03 and Confidence of 0.5. This study resulted in an Apriori algorithm producing seven rules and forming a combination of 2 items with a rule strength of 13.14% and accuracy of 92.80%. Hash-Based Algorithm 7 Rule developed as many as two itemsets with a rule strength of 14.35%and formed an accuracy of 107.76%. From the results of the algorithm, comparison can be concluded that Hash-Based Algorithm is better  than Apriori algorithm
References
O. S. A. Destiyati and E. Aribowo, “Analisis Perbandingan Algoritma Apriori Dan Algoritma Hash Based Pada Market Basket Analysis Di Apotek UAD,†JSTIE (Jurnal Sarj. Tek. Inform., vol. 3, no. 1, pp. 1–10, 2015.
S. P. Adithama, F. K. S. Dewi, and E. Hariyadi, “Penerapan Algoritma Apriori dan Fuzzy Tsukamoto untuk Rekomendasi Jumlah Pembelian Barang dan Promo pada Toko Serba Ada (Implementation of Apriori and Fuzzy Tsukamoto Algorithms for Number of Purchases of Goods and Promo Recommendation at Convenience Store,†JUITA J. Inform., vol. 8, no. 2, pp. 261–270, 2020.
D. Listriani, A. H. Setyaningrum, and F. Eka, “Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Pada Aplikasi Analisa Pola Belanja Konsumen (Studi Kasus Toko Buku Gramedia Bintaro),†J. Tek. Inform., vol. 9, no. 2, 2016.
A. G. Novianti and D. Prasetyo, “Penerapan Algoritma K-Nearest Neighbor (K-NN) untuk Prediksi Waktu Kelulusan Mahasiswa,†in Seminar Nasional APTIKOM (SEMNASTIKOM), 2017, pp. 108–113.
N. Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Menggunakan Metode Apriori Pada Supermarket Sejahtera Lhokseumawe,†TECHSI-Jurnal Tek. Inform., vol. 7, no. 1, pp. 132–155, 2019.
A. K. Prasidya and C. Fibriani, “Analisis Kaidah Asosiasi Antar Item Dalam Transaksi Pembelian Menggunakan Data Mining Dengan Algoritma Apriori (Studi Kasus: Minimarket Gun Bandungan, Jawa Tengah),†JUTI J. Ilm. Teknol. Inf, vol. 15, no. 2, p. 173, 2017.
P. I. Purnamasari, F. Marisa, and I. D. Wijaya, “SISTEM PENDUKUNG KEPUTUSAN REKOMENDASI PAKET MENU MENGGUNAKAN ALGORITMA APRIORI DENGAN METODE MARKET BASKET ANALISIS PADA KINGS FOOD KENDARI,†J. SPIRIT, vol. 11, no. 1, 2019.
D. Setianingsih and R. F. Hakim, “Penerapan data mining dalam analisis kejadian tanah longsor di indonesia dengan menggunakan association rule algoritma apriori,†in Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS, 2015, vol. 2015, pp. 731–741.
K. Ummi, “Analisa Data Mining Dalam Penjualan Sparepart Mobil Dengan Menggunakan Metode Algoritma Apriori (Studi Kasus: Di Pt. Idk 1 Medan),†CSRID (Computer Sci. Res. Its Dev. Journal), vol. 8, no. 3, pp. 155–164, 2016.
T. D. Prakoso, “Penemuan Pola Asosiasi Pada Data Restoran Menggunakan Algoritma Hash Based,†Senamika, vol. 1, no. 1, pp. 71–80, 2020.



