Prediksi Calon Pendonor Darah Potensial Dengan Algoritma Naïve Bayes, K-Nearest Neighbors dan Decision Tree C4.5
DOI:
https://doi.org/10.30865/jurikom.v7i1.1953Keywords:
Blood Donation, Naive Bayes, K-Nearest Neighbors, Decision Tree C4.5Abstract
Blood donation is a process of taking blood from donors that is declared feasible, in terms of various factors including age, weight, blood pressure, hemoglobin levels, and donor status which are taken into consideration during the feasibility test. This study was conducted to find the most appropriate method with high accuracy and Area Under Curve (AUC) values using 3710 blood donor datasets from the Bekasi City PMI, processed using the Naïve Bayes algorithm method, K-Nearest Neighbors and Decision Tree C4.5. The analysis shows that the Decision Tree C4.5 algorithm shows higher accuracy of 93.83% compared to Naïve Bayes algorithm which shows an accuracy value of 85.15% and the K-Nearest Neighbors algorithm with an accuracy value of 84.10%. In addition to these values, Decision Tree C4.5 is also visually superior where the Decision Tree has an output model tree that shows attribute relationships and has an AUC value of 0.978, Naïve Bayes with an AUC value of 0.927 and K-Nearest Neighbors with an AUC value of 0.816.
References
PMI, “Sejarah PMI,†Palang Merah Indonesia, 2011. [Online]. Available: http://www.pmi.or.id/index.php/tentang-kami/sejarah-pmi.html?showall=1&limitstart=. [Accessed: 10-Nov-2019].
Kemenkumham RI, “Peraturan Pemerintah No. 7 Tahun 2011,†2011.
Pusdatin Kemkes RI, “Pelayanan Darah Di Indonesia,†Kementerian Kesehatan RI, 2014.
WHO, “World Blood Donor Day 2008,†World Health Organization, 2008. [Online]. Available: https://www.who.int/worldblooddonorday/archives/2008/en/.
American Cancer Society, “Blood Transfusion and Donation,†American Cancer Society, 2017. [Online]. Available: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/blood-transfusion-and-donation/donating-blood.html. [Accessed: 07-Apr-2017].
W. Boonyanusith and P. Jittamai, “Blood donor classification using neural network and decision tree techniques,†Lect. Notes Eng. Comput. Sci., vol. 1, pp. 499–503, 2012.
M. Yunus, H. Dachlan, and P. Santoso, “SPK Pemilihan Calon Pendonor Darah Potensial Dengan Algoritma C4.5 Dan Fuzzy Tahani,†J. EECCIS, 2014.
B. D. Meilani and C. Utomo, “Aplikasi Data Mining Untuk Pola Permintaan Darah Di Udd ( Unit Donor Darah ) Pmi Kota Surabaya,†Pros. Semin. Nas. Manaj. Teknol. XXII, pp. 1–7, 2015.
W. E. Susanto and D. Riana, “Komparasi Algoritma Neural Network, K-Nearest Neighbor Dan Naive Baiyes Untuk Memprediksi Pendonor Darah Potensial,†J. Speed - Sentra Penelit. Eng. dan Edukasi, vol. 8, no. 3, pp. 18–27, 2016.
A. Kurniawan, “( Studi Kasus Pmi Semarang ),†pp. 1–29, 2010.
W. E. Susanto and C. Agustina, “Komparasi Akurasi Algoritma C4.5 Dan Naive Bayes Untuk Prediksi Pendonor Darah Potensial Dengan Dataset Rfmtc,†Semin. Nas. Ilmu Komput. (SNIK 2016), no. Snik, pp. 16–21, 2016.
Y. Nurdiansyah, P. Pandunata, N. D. Prasetyo, A. Trihartono, F. G. Putrianti, and F. Wijayanto, “Application of blood donor routine detector using K-Nearest neighbors,†IOP Conf. Ser. Earth Environ. Sci., vol. 293, no. 1, 2019.
G. Suwardika, “Pengelompokan Dan Klasifikasi Pada Data Hepatitis Dengan Menggunakan Support Vector Machine (SVM), Classification And Regression Tree (Cart) Dan Regresi Logistik Biner,†J. Educ. Res. Eval., vol. 1, no. 3, p. 183, 2017.
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
D. T. Larose, Data Mining Methods and Models. 2006.
Priyadharsini.C and D. A. S. Thanamani, “An Overview of Knowledge Discovery Databaseand Data mining Techniques,†Int. J. Innov. Res. Comput. Commun. Eng., vol. 2, no. 1, pp. 1571–1578, 2014.
J. Eska, “Penerapan Data Mining Untuk Prekdiksi Penjualan Wallpaper Menggunakan Algoritma C4.5 STMIK Royal Ksiaran,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, pp. 9–13, 2016.
Bustami, “Penerapan Algoritma Naive Bayes,†J. Inform., 2014.
Aswendy, “Analisis data iklim indonesia menggunakan aplikasi weka dengan metode klasifiksi,†J. Teknol. Rekayasa, vol. Volume 21, pp. 217–228, 2016.
S. Dewi, “Komparasi 5 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Keberhasilan Pemasaran Produk Layanan Perbankan,†None, vol. 13, no. 1, pp. 60–66, 2016.
Y. Wu, K. Ianakiev, and V. Govindaraju, “Improved k-nearest neighbor classification,†Pattern Recognit., vol. 35, no. 10, pp. 2311–2318, 2002.
B. Setywan, “VISUALISASI DASHBOARD POWER BI DAN PERAMALAN JUMLAH KASUS DEMAM BERDARAH DENGUE DI KABUPATEN MALANG MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORK,†Institut Teknologi Sepuluh Nopember Surabaya, 2017.



