Uji Akurasi Dataset Pasien Pasca Operasi Menggunakan Algoritma Naïve Bayes Menggunakan Weka Tools

Authors

  • Muhammad Rahmadi Universitas Darwan Ali, Jakarta
  • Fazriyanor Kaurie Universitas Darwan Ali, Jakarta
  • Tuti Susanti Universitas Darwan Ali, Jakarta

DOI:

https://doi.org/10.30865/jurikom.v7i1.1761

Keywords:

Data Mining, Algorithm, Naïve Bayes, Post-Operative, Experimenter

Abstract

Postoperative patient data sets taken for testing of this data are sourced from the UCI repository on the website https://archive.ics.uci.edu/ml/datasets/Post-Operative+Patient. Based on the website address, the study was conducted by Sharon Summers, School of Nursing, University of Kansas, Medical Center, Kansas City, KS 66160 and Linda Woolery, School of Nursing, University of Missouri, Columbia, MO 6521. Number of attributes from this data set there are 8 and 1 class, the attributes in question include; L-CORE (patient's internal temperature in C), L-SURF (patient's surface temperature in C), L-O2 (oxygen saturation in%), L-BP (last measurement of blood pressure), SURF-STBL (stability of the patient's surface temperature ), CORE-STBL (stability of the patient), BP-STBL (stability of the patient's blood pressure), COMFORT (perceived comfort of the patient at discharge, measured as an integer between 0 and 20) and ADM-DECS decision class / patient exit decision with information (I = patient sent to intensive care unit, S = patient ready to go home, A = patient sent to general hospital floor).

Author Biographies

Muhammad Rahmadi, Universitas Darwan Ali, Jakarta

Jurusan Sistem Informasi, Fakultas Ilmu Komputer

Fazriyanor Kaurie, Universitas Darwan Ali, Jakarta

Jurusan Sistem Informasi, Fakultas Ilmu Komputer

Tuti Susanti, Universitas Darwan Ali, Jakarta

Jurusan Sistem Informasi, Fakultas Ilmu Komputer

References

N. Suhartini, K. Maykel, and J. Rottie, “PENGARUH TEKNIK RELAKSASI TERHADAP INTENSITAS NYERI PADA PASIEN POST OPERASI FRAKTUR DI RUANG IRNINA A BLU RSUP PROF Dr. R.D KANDOU MANADO,†ejournal keperawatan (e-Kp), vol. 1, pp. 1–6, 2013.

M. S. Rohmayani and J. Suwito, “INTENSITAS NYERI KLIEN PASCA OPERASI MAYOR DI RUMAH SAKIT ISLAM JEMURSARI SURABAYA,†J. KEPERAWATAN, vol. X, no. 2, pp. 91–97, 2017.

S. et Al, “No Title,†Anesth. Study Comm. Philadelphia Cty. Med. Soc. 1947, vol. x, pp. 1–7, 2005.

M. Sabransyah, Y. N. Nasution, and D. Tisna, “Aplikasi Metode Naive Bayes dalam Prediksi Risiko Penyakit Jantung Naive Bayes Method for a Heart Risk Disease Prediction Application,†J. EKSPONENSIAL, vol. 8, pp. 111–118, 2017.

W. D. Septiani, P. Studi, and M. Informatika, “KOMPARASI METODE KLASIFIKASI DATA MINING ALGORITMA C4.5DAN NAIVE BAYESUNTUK PREDIKSI PENYAKIT HEPATITIS,†J. Pilar Nusa Mandiri, vol. 13, no. 1, pp. 76–84, 2017.

P. Studi and T. Informatika, “Analisis Pola Pemilihan Konsentrasi Ilmu Jurusan Sistem Informasi Di STMIK TIME,†J. TIMES, vol. VI, no. 2, pp. 37–43, 2017.

D. Novianti, “Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner,†J. Komput. dan Inform. Akad. Bina Saran Inform., vol. XXI, no. 1, 2019.

Additional Files

Published

2020-02-15

How to Cite

Rahmadi, M., Kaurie, F., & Susanti, T. (2020). Uji Akurasi Dataset Pasien Pasca Operasi Menggunakan Algoritma Naïve Bayes Menggunakan Weka Tools. JURNAL RISET KOMPUTER (JURIKOM), 7(1), 134–139. https://doi.org/10.30865/jurikom.v7i1.1761