Analisis Perbandingan Rule Pakar dan Decision Tree J48 Dalam Menentukan Jumlah Produksi Kain Tenun Menggunakan Metode Fuzzy Tsukamoto

 (*)Tundo Amri Mujahid Mail (UIN SUNAN KALIJAGA YOGYAKARTA, Indonesia)
 Enny itje Sela (Universitas Teknologi Yogyakarta, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/jurikom.v6i5.1510

Abstract

This study explains the comparative analysis of expert rules and J48 decision tree using Tsukamoto fuzzy in determining the amount of woven fabric production. From the results of the research analysis, it was found that the rule base model in this study was a decision tree with 83.3333% accuracy based on the J48 decision tree algorithm that was tested using WEKA tools. The results of direct comparison analysis with actual production data that J48 decision tree rule is the closest to the actual data is with an error rate of 3.89% so that the accuracy of the truth reaches 96.11%, while using expert rules has an error rate of 14.45% so that the accuracy truth obtained reached 85.55%. Therefore, an idea was found that to make a rule without having to consult with experts, that is enough to use a decision tree with WEKA tools, because WEKA tools will display the accuracy of the truth of the rules formed.

Full Text:

PDF


Article Metrics

Abstract View: 171 times | PDF View: 71 times

References

Tundo, “PENERAPAN METODE FUZZY INFERENCE SYSTEM UNTUK MEMPREDIKSI JUMLAH PRODUKSI KAIN TENUN,” Universitas Teknologi Yogyakarta, 2017.

Tundo and E. I. Sela, “APPLICATION OF THE FUZZY INFERENCE SYSTEM METHOD TO PREDICT,” Int. J. Informatics Dev., vol. 7, no. 1, pp. 1–9, 2018.

T. L. (Bill) Tseng, U. Konada, and Y. (James) Kwon, “A novel approach to predict surface roughness in machining operations using fuzzy set theory,” J. Comput. Des. Eng., vol. 3, no. 1, pp. 1–13, 2016.

A. Juliansyah, “Penerapan Metode Fuzzy Tsukamoto Untuk Memprediksi Hasil Produksi Kelapa Sawit ( Studi Kasus :,” vol. 4, no. 1, pp. 130–137, 2015.

H. / T. A. M. / H. T. Sigit, “Implementation Of Fuzzy-C4.5 Classification As a Decision Support For Students Choice Of Major Specialization,” ArXiv.org, vol. 2, no. 11, pp. 1577–1581, 2015.

D. M. Sukandy, A. T. Basuki, and S. Puspasari, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Minyak Sawit Berdasarkan Data Persediaan Dan Jumlah Permintaan ( Studi Kasus Pt Perkebunan Mitra Ogan Baturaja ),” Progr. Stud. Tek. Inform., pp. 1–9, 2014.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Perbandingan Rule Pakar dan Decision Tree J48 Dalam Menentukan Jumlah Produksi Kain Tenun Menggunakan Metode Fuzzy Tsukamoto

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURIKOM (Jurnal Riset Komputer)



JURIKOM (Jurnal Riset Komputer)
Di publikasikan oleh P3M - STMIK BUDI DARMA
Email: jurikom.stmikbd@gmail.com

Creative Commons License
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Attribution 4.0 International.