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Abstrak

Penyakit kardiovaskular merupakan penyebab utama kematian global. Namun, kompleksitas data medis sering membuat model
konvensional gagal menangkap pola tersembunyi sehingga performa prediksi menjadi tidak optimal. Penelitian ini mengevaluasi
efektivitas model hibrida yang mengintegrasikan K-Modes Clustering dengan algoritma Stacking Classifier dan menguji apakah
kompleksitas model tersebut mampu memberikan peningkatan kinerja yang baik dibandingkan model tunggal. Metodologi melibatkan
pra-pemrosesan data termasuk penanganan outlier, rekayasa fitur klinis, dan ekstraksi fitur klaster menggunakan K-Modes (K=2).
Arsitektur Stacking Classifier dibangun menggunakan lima base-learner heterogen yang telah dioptimalkan (CatBoost, Decision Tree,
MLP, SVC, Logistic Regression) dan XGBoost sebagai meta-learner, divalidasi melalui Stratified 5-Fold Cross-Validation. Hasil
penelitian menunjukkan bahwa meskipun K-Modes efektif memetakan kategori risiko valid secara klinis, model Stacking Classifier
(akurasi 87,99% dan ROC-AUC 95,89%), terbukti belum mampu melampaui performa model tunggal terbaik, yaitu CatBoost (akurasi
88,03% dan ROC-AUC 95,90%). Temuan paling signifikan terletak pada efisiensi waktu komputasi, di mana algoritma Stacking
Classifier memerlukan waktu komputasi 560 kali lipat lebih lama (7587,7686 detik) dibandingkan CatBoost (13,4635 detik) tanpa
memberikan peningkatan performa yang sepadan. Hal ini menunjukkan bahwa algoritma berbasis Boosting mampu menangkap pola
kompleks tanpa memerlukan lapisan ensemble tambahan, sehingga model tunggal yang dioptimalkan lebih direkomendasikan untuk
implementasi nyata dengan memberikan keseimbangan terbaik antara keakuratan prediksi dan efisiensi waktu komputasi.

Kata Kunci: Penyakit Kardiovaskular; Stacking Classifier; K-Modes Clustering; Stratified Cross-Validation; Efisiensi Komputasi

Abstract

Cardiovascular disease is a leading cause of global death. However, the complexity of medical data often makes conventional models
fail to capture hidden patterns, resulting in suboptimal predictive performance. This study evaluates the effectiveness of a hybrid model
that integrates K-Modes Clustering with the Stacking Classifier algorithm and tests whether the model's complexity can provide
significant performance improvements compared to a single model. The methodology involves data preprocessing including outlier
handling, clinical feature engineering, and cluster feature extraction using K-Modes (K=2). The Stacking Classifier architecture is built
using five optimized heterogeneous base-learners (CatBoost, Decision Tree, MLP, SVC, Logistic Regression) and XGBoost as a meta-
learner, validated through Stratified 5-Fold Cross-Validation. The results showed that although K-Modes effectively mapped clinically
valid risk categories, the Stacking Classifier model (87.99% accuracy and 95.89% ROC-AUC) was not able to surpass the performance
of the best single model, namely CatBoost (88.03% accuracy and 95.90% ROC-AUC). The most significant finding lies in the
computational time efficiency, where the Stacking Classifier algorithm required 560 times longer computational time (7587.7686
seconds) than CatBoost (13.4635 seconds) without providing a commensurate performance improvement. This indicates that Boosting-
based algorithms are able to capture complex patterns without requiring additional ensemble layers, so that an optimized single model
is more recommended for real-world implementations by providing the best balance between prediction accuracy and computational
time efficiency.
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1. PENDAHULUAN

Penyakit kardiovaskular merupakan masalah kesehatan paling serius di dunia. Jumlah penderita diperkirakan akan terus
meningkat pada tahun 2025. Sebagai contoh, pada tahun 2022 terdapat 19,8 juta kematian di seluruh dunia. Ini mencakup
sekitar 32% dari seluruh kematian, dengan 85% di antaranya disebabkan oleh serangan jantung dan stroke [1]. Data dari
Institute for Health Metrics and Evaluation (IHME) menunjukkan peningkatan kematian akibat penyakit kardiovaskular
di Indonesia antara tahun 2020 hingga 2023. Kematian akibat penyakit kardiovaskular pada tahun 2020 memiliki
persentase sekitar 5,51% dan pada tahun 2023 sekitar 11,47%, terjadi peningkatan dua kali lipat sekitar 5,96% yang
mengindikasikan adanya peningkatan angka mortalitas [2]. World Health Organization (WHO) memperingatkan bahwa
tanpa adanya upaya serius untuk mencegah, jumlah kematian dan kasus penyakit kardiovaskular akan terus meningkat.

Faktor risiko utama kardiovaskular seperti usia, tekanan darah, berat badan, kadar kolesterol, kadar glukosa, dan
gaya hidup (merokok, olahraga, atau alkohol) merupakan fitur penting dalam pelatihan model machine learning.
Permasalahan utama bagi model single classifier adalah karakteristik data yang sangat kompleks. Fitur alami penyakit
kardiovaskular pada dasarnya adalah multifaktorial dan melibatkan hubungan yang sangat kompleks, seringkali bersifat
non-linear antara berbagai faktor risiko tersebut [3]. Sebagai contoh, dampak dari kolesterol tinggi terhadap risiko
kardiovaskular dapat diperburuk secara signifikan oleh kondisi status merokok. Hal ini merupakan suatu efek interaktif
yang penting dan faktor risiko tersebut diketahui sangat terkait satu sama lain [4]. Dengan hal tersebut, model-model
single classifier gagal menangani hubungan non-linear secara efektif [S5] dan cenderung mengabaikan istilah interaksi
(interaction terms) yang penting antar faktor risiko [4]. Kegagalan dalam menangkap pola-pola kompleks berujung pada
performa prediktif yang kurang optimal dan keandalan yang terbatas pada model single classifier.
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Menghadapi keterbatasan model single classifier, penerapan Stacking Classifier menjadi solusi efektif untuk
menangani kompleksitas fitur dalam deteksi risiko kardiovaskular. Pendekatan ini terbukti efektif dalam meningkatkan
akurasi klasifikasi risiko kardiovaskular dengan melatih meta-learner secara khusus untuk mempelajari pola terbaik
ketika menggabungkan berbagai hasil prediksi dari base learner [6]. Strategi pemilihan algoritma single classifier sebagai
komponen Stacking Classifier didasarkan dengan memaksimalkan keragaman model sekaligus mempertahankan
performa model yang kuat [7]. CatBoost memanfaatkan teknik Ordered Boosting untuk menangani fitur kategorikal dan
mencegah target leakage [8]. Decision Tree menerapkan interaksi fitur secara eksplisit melalui pemisahan rekursif yang
memberikan perspektif berbeda dari model boosting [9]. Logistic Regression sebagai penyeimbang linear dengan
memanfaatkan fungsi sigmoid untuk mengestimasi probabilitas kejadian dengan varians yang rendah [10]. XGBoost
secara internal menggunakan integrasi regularisasi L1 (Lasso) dan L2 (Ridge) untuk mengontrol kompleksitas model dan
mencegah overfitting secara efektif [11]. MLP memanfaatkan hidden layers dan aktivasi non-linear untuk memodelkan
hubungan data yang sangat kompleks [12]. Support Vector Classifier with Radial Basis Function Kernel memanfaatkan
kernel trick RBF untuk memetakan data ke ruang berdimensi tinggi dan menemukan Ayperplane pemisah non-linear yang
optimal [13]. Kombinasi algoritma yang beragam menjadikan meta-learner mampu mengekstraksi wawasan dari berbagai
perspektif komputasi untuk menghasilkan keputusan akhir yang lebih akurat dan robust.

Berbagai studi sebelumnya telah membahas potensi algoritma Stacking Classifier dalam klasifikasi risiko
kardiovaskular. Penelitian Bhatt et al. berfokus pada pra-pemrosesan data kardiovaskular dengan menerapkan K-modes
Clustering untuk mengekstraksi fitur klaster dari data kategorikal menggunakan metode inisialisasi Huang. Fitur klaster
tersebut ditambahkan sebagai fitur baru dan diuji pada beberapa algoritma single classifier. Terdapat dua skenario, yaitu
tanpa tuning dan optimalisasi hyperparameter GridSearchCV. Hasilnya bahwa MLP yang dioptimalisasi dan
menunjukkan akurasi tertinggi mencapai 87,28%, membuktikan efektivitas K-Modes sebagai teknik feature engineering
[14]. Penelitian Khan et al. memanfaatkan algoritma Stacking Classifier untuk klasifikasi risiko kardiovaskular dan
diabetes dengan base-learner terdiri dari Naive Bayes, KNN, Linear Discriminant Analysis, dan Decision Tree, dengan
SVM sebagai meta-learner. Model Stacking mencapai akurasi 97,35% untuk data diabetes dan 88,71% untuk data
kardiovaskular, membuktikan SVM sebagai meta-learner yang valid [15].

Penelitian Mohapatra et al. mengoptimalkan pra-pemrosesan data melalui Z-score outlier detection dan min-max
normalization pada data kardiovaskular. Algoritma stacking menggabungkan 10 base-learner beragam, dengan MLP
sebagai meta-learner. Model stacking lebih unggul dibandingkan single classifier dengan perbandingan akurasi mencapai
91,8%, precision 92,6%, sensitivity 92,6%, dan specificity 91% [16]. Penelitian Sultan et al. mengembangkan model
NCDG yang berfokus pada penanganan class imbalance menggunakan teknik SMOTE dan BorderLineSMOTE.
Arsitektur Stacking Classifier terdiri dari Naive Bayes, CatBoost, dan Decision Tree sebagai base-learner dan Gradient
Boosting sebagai meta-learner. Model divalidasi menggunakan K-Fold Cross Validation dan menghasilkan akurasi 91%,
recall 91%, precision 91%, F1-Score 91%, dan AUC-ROC 97%, mengungguli model single classifier [17].

Berdasarkan Tinjauan penelitian tersebut, ditemukan celah dalam optimalisasi deteksi risiko kardiovaskular.
Penelitian Bhatt et al. telah membuktikan efektivitas K-Modes Clustering sebagai teknik feature engineering, namun
penggunaannya masih terbatas pada model single classifier. Di sisi lain, studi mengenai Stacking Classifier oleh Khan et
al. dan Mohapatra et al. telah menunjukkan performa unggul, tetapi belum mengintegrasikan fitur berbasis clustering
untuk menangani kompleksitas data secara mendalam. Selain itu, penggunaan algoritma XGBoost dalam literatur
ensemble sebelumnya yaitu Mohapatra et al. umumnya hanya diposisikan sebagai base-learner, sehingga potensi sebagai
meta-learner dalam mengoreksi bias dari berbagai model heterogen belum dieksplorasi secara optimal.

Penelitian ini mengusulkan model hibrida yang mengintegrasikan fitur klaster dari K-Modes Clustering ke dalam
algoritma Stacking Classifier. Pemilihan K-Modes Clustering didasarkan pada kemampuan menangani data kategorikal
melalui dissimilarity measure, yang memberikan informasi baru dengan tetap mempertahankan distribusi data asli.
Algoritma ini melibatkan lima base-learner (CAT, DT, MLP, SVC RBF, dan LR) untuk menciptakan diversitas pola
pembelajaran untuk menangkap hubungan non-linear yang kompleks. Kebaruan utama dalam penelitian ini terletak pada
pemanfaatan XGBoost sebagai meta-learner. Dengan mekanisme gradient boosting dan fitur regulasi L1/L2 yang kuat,
XGBoost diharapkan mampu mengoptimalkan prediksi akhir dengan mempelajari bobot kesalahan dari setiap base-
learner secara lebih akurat dan robust. Secara teknis, penelitian ini menyajikan kerangka baru dalam feature engineering
hibrida yang menggabungkan kekuatan pengelompokan data kategorikal dengan pembelajaran ensemble dan memberikan
bukti baru mengenai efektivitas XGBoost sebagai pengambil keputusan tingkat akhir. Dengan penelitian ini, diharapkan
menghasilkan sistem prediksi medis yang lebih akurat dan dapat menjadi landasan bagi praktisi kesehatan dalam
pengambilan keputusan klinis berbasis data serta mendukung upaya deteksi dini risiko kardiovaskular secara lebih presisi.

2. METODOLOGI PENELITIAN

Proses penelitian ini menggunakan metode Data Science Life Cycle. Kerangka tersebut merupakan sebuah konseptualisasi
penting dalam pengembangan ilmu data dengan menerapkan tahap-tahapan eksperimen [18]. Metodologi Data Science
Life Cycle mencakup proses yang diperlukan untuk menganalisis, merancang, mengembangkan, dan mengevaluasi
efektivitas model [19]. Langkah-langkah yang dilakukan dalam penelitian ini ditunjukkan pada Gambar 1.
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Pra-pemrosesan Data

1.Pembersihan data - Evaluasi Moc}gl
2.Rekayasa Fitur Seleksi Model Pelat.lhan MO}i.el (Accuracy, Precision,

3. Transformasi data Stacking Classifier Recall, Fl.—scor.e dan
4. Ekstraksi Fitur Klaster Computing Time)
5.Pembagian Data

Gambar 1. Alur Penelitian

Berdasarkan alur pada Gambar 1, proses penelitian dilakukan secara sistematis melalui tahapan pengumpulan data,
pra-pemrosesan data, seleksi model, pelatihan model Stacking Classifier, hingga evaluasi model.

2.1 Pengumpulan Data

Penelitian ini memanfaatkan kumpulan data yang bersumber dari platform Kaggle. Dataset yang digunakan berjudul
Cardiovascular Disease Dataset, dikumpulkan oleh Svetlana Ulianova. Dataset ini terdiri dari 70.000 data pasien dengan
12 atribut. Atribut yang digunakan untuk memprediksi risiko kardiovaskular meliputi fitur demografis (age dan gender),
fitur antropometri (weight dan height), fitur pemeriksaan klinis (tekanan darah sistolik, tekanan darah diastolik,
kolesterol, dan glukosa), dan fitur gaya hidup (merokok, alkohol, dan olahraga). Variabel target (label) adalah ada atau
tidak adanya risiko terkena kardiovaskular yang direpresentasikan secara biner (0 untuk sehat dan 1 untuk terkena risiko).

2.2 Pra-pemrosesan Data

Pra-pemrosesan data merupakan tahap krusial dalam menyiapkan data mentah menjadi input berkualitas bagi algoritma.
Kualitas data input secara langsung memengaruhi kinerja dan keandalan algoritma yang akan dibangun. Serangkaian
proses akan dilakukan melalui beberapa tahapan, meliputi membersihkan, mentransformasi, dan memperkaya dataset.

2.2.1 Pembersihan Data

Proses pembersihan data dilakukan melalui tiga tahapan utama yaitu penanganan nilai yang hilang, penghapusan data
duplikat, dan penanganan outlier. Tahap pertama adalah pengecekan nilai yang hilang pada seluruh atribut dalam dataset.
Jika terdapat nilai yang hilang, maka atribut numerik diimputasi menggunakan nilai mean. Sementara atribut kategorikal
diimputasi dengan nilai modus. Selanjutnya, pengecekan data duplikat untuk mengidentifikasi baris data yang identik.
Data yang identik dihapus untuk memastikan setiap data mewakili individu unik dan menghindari bias dalam hasil
pelatihan model.

Tahap selanjutnya proses penanganan outlier. Tahap ini penting dilakukan karena nilai ekstrem dapat
menyebabkan distorsi pada distribusi data (skewness), menurunkan performa, dan keandalan generalisasi model.
Penanganan ini difokuskan pada atribut yang bersifat numerik kontinu, seperti usia, berat badan, tinggi badan, tekanan
darah sistolik dan tekanan darah diastolik. Sebagai langkah diagnostik, analisis skewness dilakukan menggunakan
persamaan (1) untuk mengidentifikasi atribut dengan tingkat kemiringan tinggi yang mengindikasikan adanya outlier.

n =3
- Dm-204 s 0
=
Penjelasan persamaan:

G,=koefisien kemiringan (skewness).
n = jumlah total sampel dalam dataset.
x; = nilai data ke-i.

X = nilai rata-rata (mean) dari data.

s = standar deviasi sampel.

Metode yang digunakan untuk mendeteksi outlier adalah Interquartile Range (IQR). Nilai dianggap sebagai outlier
jika berada di luar rentang yang didefinisikan oleh kuartil pertama (Q1) dan kuartil ketiga (Q3). IQR diukur rentang antara
Q1 dengan nilai persentil 25% data terendah dan Q3 dengan nilai persentil 75% data terendah, maka diperoleh IQR
dengan mengurangi nilai Q3 dan Q1 seperti persamaan (2).

IQR = Q3 — Q4 )

Dalam proses penentuan batas atas (upper bound) dan batas bawah (lower bound) dihitung menggunakan
persamaan (3), dimana perhitungannya menjumlahkan nilai kuartil atas (Q3) dengan 1.5 kali nilai IQR serta
mengurangkan nilai kuartil bawah (Q1) dengan 1.5 kali nilai IQR [20].

Upper Bound = Q5 + (1.5 X IQR), Lower Bound = Q; — (1.5 X IQR) (€)

oo o

Nilai x; diklasifikasikan sebagai outlier jika memenuhi kondisi x;< lower bound atau x;> upper bound. Nilai
outlier yang ditemukan kemungkinan merepresentasikan kesalahan input atau anomali pengukuran yang tidak mewakili
populasi secara umum, sehingga data tersebut dihapus. Rangkaian proses pembersihan dilakukan untuk memastikan
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model dilatih pada data yang berkualitas sehingga dapat meningkatkan performa dan kemampuan generalisasi algoritma
pada data baru.

2.2.2 Rekayasa Fitur

Tahap rekayasa fitur dilakukan untuk menciptakan variabel prediktor baru yang lebih informatif dari atribut yang sudah
ada, dengan tujuan meningkatkan performa prediktif model. Berdasarkan atribut weight dan height yang terdapat dalam
dataset, fitur Body Mass Index (BMI) dihitung menggunakan persamaan (4). BMI merupakan indikator standar yang
digunakan secara klinis untuk mengkategorikan status berat badan (kurang berat badan, normal, kelebihan berat badan,
atau obesitas) dan merupakan faktor risiko utama penyakit kardiovaskular [21].

_ weight (kg)
" height (m)?

Terdapat perhitungan untuk fitur MAP (Mean Arterial Pressure) menggunakan persamaan (5). Fitur ini diturunkan
dari ap_hi (tekanan darah sistolik) dan ap _lo (tekanan darah diastolik). MAP merupakan rata-rata tekanan arteri selama
satu siklus jantung dan dianggap sebagai indikator perfusi organ yang lebih baik daripada tekanan darah sistolik atau
diastolik [22]. Kedua fitur baru ini ditambahkan ke dalam dataset yang akan membantu model dalam training lebih lanjut.

BMI 4)

MAP = AaPhi + (; X aon) (5)

2.2.3 Transformasi Data

Tahap transformasi data mencakup proses feature binning dan encoding data. Feature binning dilakukan dengan
mengubah fitur numerik kontinu (age, BMI dan MAP) menjadi kategorikal untuk menangkap hubungan linear dan
menyederhanakan pola bagi model. Setiap kategori dibagi menjadi beberapa kategori berdasarkan metode custom width
binning berbasis domain-knowledge binning. Proses pemetaan ini mengikuti persamaan (6), di mana nilai fitur numerik
kontinu (x) ditransformasikan menjadi label kategori tertentu (k;) apabila nilai tersebut berada dalam rentang ambang
batas atau bin boundaries (b;) yang telah ditentukan. Metode ini dipilih karena data risiko kardiovaskular bersifat non-
linear dan sangat bergantung pada ambang batas (threshold) klinis yang sudah divalidasi.

y=f(x)=kyjikab_y <x <b; (6)

Penentuan ambang batas (b;) didasarkan pada domain-knowledge binning untuk menjamin sensitivitas klinis
model terhadap risiko kardiovaskular. Fitur age dikategorikan dalam rentang lima tahun (quinguennium) melalui
pendekatan k=|age/5| Pendekatan ini umum dalam studi epidemiologi untuk menangkap pola bagaimana risiko
meningkat secara signifikan pada kelompok usia tertentu, yang mungkin tidak tertangkap oleh model linear [23]. Fitur
BMI dikategorikan mengikuti standar global World Health Organization (WHO). Hal ini menyelaraskan data dengan
definisi klinis obesitas yang merupakan faktor risiko utama kardiovaskular [24]. Fitur MAP dibagi ke dalam rentang
spesifik untuk merepresentasikan status klinis perfusi organ, terutama dalam mengidentifikasi nilai kritis (misalnya, di
bawah 70 mmHg yang memiliki arti klinis yang berbeda) [22].

Selanjutnya, encoding data diterapkan pada semua fitur kategorikal ke dalam format numerik menggunakan
metode /abel encoding. Pendekatan ini merupakan fungsi pemetaan one-to-one mapping dari himpunan kategori ke C
himpunan bilangan bulat menggunakan persamaan (7).

f:€-1{01.2,..,n—1} (7

Di mana C yaitu himpunan kategori unik C = {c,, ¢,, ... ¢, }. Setiap elemen c; dipetakan ke nilai unik f(c;) = i.
Pendekatan ini mengubah data non-numerik menjadi representasi integer unik sebagai langkah awal untuk ekstraksi fitur
klaster.

2.2.4 Ekstraksi Fitur Klaster

Ekstraksi fitur klaster dilakukan menggunakan algoritma K-Modes Clustering untuk mengidentifikasi pola tersembunyi
pada data kategorikal dengan meminimalkan total dissimilarity (ketidakmiripan) melalui pendekatan simple matching
dissimilarity. Proses pengelompokan berfokus pada minimalisasi fungsi biaya di dalam klaster (P) bagi seluruh sampel
data pasien (n) berdasarkan jumlah klaster (k) yang ditetapkan, sebagaimana didefinisikan dalam persamaan (8).

n

k
PW,2)= ) > wyd(XuZ) ®)
i =1

i=1

Di mana w;; merupakan matriks partisi biner yang bemilai jika objek i berada pada klaster I, sementara d(X;, Z;)
adalah ukuran ketidakmiripan antara vektor data pasien ke- i (X;) dengan vektor pusat klaster ke- [ (Z;). Nilai
ketidakmiripan ini dihitung berdasarkan jumlah kategori yang tidak cocok diseluruh fitur kategorikal (1m) melalui
persamaan (9).

)
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m
d(Xi, Zl) = z 0 (xi]-, le)
j=1

Fungsi pembanding 6 memberikan nilai 0 jika terdapat kecocokan kategori (xl-‘ =7 ]-) dan nilai 1 jika tidak
cocok (x;; # z,;). Pusat klaster diperbarui secara berulang menggunakan nilai modus dari setiap fitur j untuk
meminimalkan total biaya dalam klaster [25]. Penentuan jumlah klaster optimal (k) dilakukan melalui metode elbow curve
dengan mengidentifikasi titik penurunan cost yang paling signifikan [26]. Inisialisasi pusat klaster menggunakan metode
Huang yang mempertimbangkan frekuensi kategori untuk memastikan hasil klaster yang lebih stabil dan robust [25].
Label klaster kemudian ditambahkan ke dataset untuk memperkaya informasi bagi algoritma stacking classifier [27].

2.2.5Pembagian Data

Proses pembagian data dipisahkan menjadi dua komponen berbeda yaitu training set (80%) dan testing set (20%).
Pembagian data menjadi dua komponen dilakukan untuk mengevaluasi kinerja terhadap kemampuan generalisasi model
secara objektif pada data yang belum pernah dilihat sebelumnya.

2.3 Seleksi Model

Seleksi model base-learner didasarkan pada pengujian dan evaluasi mendalam terhadap 11 kandidat single classifier
(mencakup CAT, XGB, LGBM, GB, DT, RF, MLP, SVC_RBF, KNN, LR, dan Naive Bayes) yang dioptimalkan melalui
hyperparameter tuning menggunakan GridSearchCV. Metode ini dilakukan dengan menguji semua kombinasi
hyperparameter yang telah didefinisikan dalam grid parameter menggunakan persamaan (10).
. _argmax 10
P = Peo f(P) (0

Proses optimasi bertujuan menemukan setelan syperparameter optimal (P*) di dalam ruang pencarian () dengan
memaksimalkan fungsi skor performa (f(P)), ditunjukkan pada persamaan (11). Model divalidasi menggunakan
StratifiedKFold 5-fold Cross Validation untuk memastikan estimasi kinerja yang robust dan menjaga proporsi kelas target
Kinerja setiap model diukur berdasarkan nilai rata-rata performa model di seluruh lipatan menggunakan persamaan (11).

1 K
M=E2Ml~ (11)
i=1

Di mana rata-rata kinerja (M) dihitung skor metrik setiap lipatan (M;) untuk menentukan peringkat model.
Berdasarkan evaluasi tersebut, lima algoritma terbaik dipilih sebagai base learner (level-0). Pendekatan ini bertujuan
untuk menyediakan input yang beragam dan saling melengkapi bagi meta-learner (level-1), sehingga dapat meningkatkan
kemampuan generalisasi model stacking secara keseluruhan.

2.4 Pelatihan Model Stacking Classifier

Proses pelatihan model menerapkan algoritma Stacking Classifier dengan dua tingkatan pembelajaran, disajikan pada
Gambar 2. Arsitektur ini mengintegrasikan berbagai model untuk meningkatkan performa dan stabilitas prediksi.
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Gambar 2. Arsitektur Model

Berdasarkan Gambar 2. proses pelatihan model dilakukan pada dua tingkatan yaitu base-learner (level-0) dan
meta-learner (level 1). Pada Level-0 (Base-learner), melibatkan lima model yang telah dioptimalkan melalui
GridSearchCV (CAT, DT, MLP, SVC_RBF dan LR). Model ini divalidasi menggunakan teknik StratifiedKFold 5-fold
Cross Validation. Setiap model dilatih pada 4 fold data latih dan menghasilkan Out-of-Fold (OOF) Prediction (Z) pada 1
fold sisanya. Secara matematis, kumpulan prediksi OOF untuk setiap model j didefinisikan seperti pada persamaan (12).

Zy=h"(),  xc€f; (12)
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Di mana setiap base-learner (h].(i)) memprediksi probabilitas (Z) pada sampel lipatan uji (x;) dalam lima kali

iterasi. Hasil prediksi OOF dari base-learner membentuk Meta-Features (dataset Z) yang diperkaya dengan fitur klinis
asli dan label cluster melalui melalui mekanisme passthrough sebelum diproses oleh meta-learner.

Pada tingkatan selanjutnya yaitu Level-1 (Meta-Learner), XGBoost digunakan untuk memproses dataset Z untuk
menghasilkan keputusan akhir (y) berdasarkan persamaan (13).

y=H(ZDZZrZSJZ4rZS) (13)

Di mana H mewakili algoritma XGBoost dalam memproses masukan dari kelima model sebelumnya untuk menghasilkan
Final Prediction (y). Dengan mekanisme ini, XGBoost mampu mengoreksi kesalahan prediksi yang dihasilkan oleh base-
learner secara kolektif untuk menghasilkan performa klasifikasi risiko kardiovaskular yang lebih robust dan akurat.

2.5 Evaluasi Model

Evaluasi model divalidasi menggunakan Stratified 5-Fold Cross-Validation dengan dataset dibagi lima fold; empat fold
digunakan sebagai data latih dan satu fold sisanya sebagai data uji secara bergantian untuk menjamin generalisasi optimal
dan menjaga keseimbangan distribusi kelas di setiap lipatan. Pengukuran performa didasarkan pada metrik accuracy,
precision, recall dan Fl-score menggunakan persamaan (14), (15), (16), dan (17) turunan dari komponen confusion
matrix. Komponen tersebut meliputi keberhasilan identifikasi pada kelas positif (7rue Positive (TP)) dan negatif (True
Negative (TN)), serta kesalahan klasifikasi pada data negatif (False Positive (FP)) dan positif (False Negative (FN)) [28].

TP+ TN 100%

= *
ACCUTacY = TP Y FP+ TN + FN 0 (14)
isi 7”, 100% 15

= *
precision TP+ FP 0 (15)
— 0 16
recall TP+FN*100/O (16)
recision * recall

F1—score=2x 2 (17)

precision + recall

Evaluasi diperkuat dengan metrik ROC-AUC, yang mengukur hubungan antara True Positive Rate (TPR) dan
False Positive Rate (FPR) pada nilai threshold secara numerik [29]. Kualitas model dinilai melalui skor AUC (0 hingga
1), di mana nilai yang mendekati nilai 1 menunjukkan kemampuan pemisahan kelas yang sangat baik, sementara nilai 0.5
setara dengan prediksi acak [29]. Secara matematis, metrik ini dihitung menggunakan persamaan (18).

— __fP (18)
TP+ FN’ FP+TN
Evaluasi lain juga mencakup estimasi biaya komputasi yang diukur melalui waktu eksekusi (detik) untuk menilai

efisiensi operasional algoritma selama proses pelatihan. Metrik ini dihitung berdasarkan selisih waktu antara dimulainya
proses pelatihan hingga berakhirnya seluruh tahapan algoritma dalam satuan detik sesuai pada persamaan (19).

TPR FPR

Execution Time = Tspiesai — Tmuiai (19)

Evaluasi waktu ini penting untuk menilai efisiensi operasional algoritma Stacking Classifier yang kompleks agar dapat
dipastikan bahwa model efektif diimplementasikan pada skenario klinis nyata.

3. HASIL DAN PEMBAHASAN

3.1 Pengumpulan Data

Dataset ini mencakup 70.000 sampel dengan 12 fitur yang diklasifikasikan ke dalam dua label, yaitu tidak berisiko (0)
dan berisiko (1). Rincian sampel dataset disajikan pada Tabel 1.

Tabel 1. Sampel Dataset

age gender height weight ap hi ap lo cholesterol gluc smoke alco active -cardio
50 2 168 62.0 110 80 1 1 0 0 1 0
55 1 156 85.0 140 90 3 1 0 0 1 1

Berdasarkan Tabel 1, dataset ini mengintegrasikan fitur demografis, klinis, dan gaya hidup sebagai variabel
independen untuk memprediksi variabel target cardio. Distribusi variabel target menunjukkan keseimbangan, yaitu
35.021 sampel (50,03%) untuk kelas 0 dan 34.979 sampel (49,97%) untuk kelas 1. Proporsi yang seimbang ini penting
untuk meminimalkan risiko bias model terhadap kelas mayoritas sehingga menjamin validitas dan keandalan performa.
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3.2 Pra-pemrosesan Data
3.2.1 Pembersihan Data

Tahap pembersihan data menunjukkan bahwa dari 70.000 sampel tidak ditemukan adanya data yang hilang pada 12 fitur.
Kondisi awal mengonfirmasi data yang baik dan tidak perlu dilakukan imputasi data. Proses pembersihan data kedua
adalah mengidentifikasi data duplikat, di mana terdapat 24 baris data duplikat. Seluruh sampel duplikat dihapus dari
dataset untuk mencegah bias dalam pelatihan model, sehingga jumlah data yang terverifikasi terdapat 69.976 sampel.

Selanjutnya dilakukan analisis distribusi fitur untuk mendeteksi keberadaan outlier yang dapat mengganggu
performa algoritma menggunakan persamaan (1). Visualisasi distribusi data disajikan pada Gambar 3.

[ Diatribs tosight [ p— Diatribss g1 it e

Gambar 3. Distribusi data dan deteksi Outlier (Sebelum)

Berdasarkan Gambar 3, analisis distribusi awal menunjukkan adanya kemiringan ekstrem (skewness) pada
beberapa fitur akibat nilai yang tidak valid secara klinis, seperti tekanan darah dengan nilai dari 10.000 mengindikasikan
adanya kesalahan input data. Nilai skewness tercatat sebesar 85,280 untuk ap hi, 33,534 untuk ap_lo, 1,008 untuk weight,
-0,532 untuk height, dan -0,307 untuk age. Melatih model machine learning pada data yang mustahil secara fisik akan
menghasilkan model yang tidak dapat digunakan di dunia nyata sehingga perlu dilakukan penanganan outlier.

Langkah mengembalikan data ke rentang klinis yang valid, melalui eliminasi outl/ier menggunakan metode IQR.
menggunakan persamaan (2) dan (3). Metode ini diterapkan secara spesifik pada lima fitur numerik, yaitu age, weight,
height, ap_hi, dan ap_lo. Proses ini berhasil mengidentifikasi dan menghapus 12.742 sampel yang berada di luar batas
kewajaran. Perubahan ini efektif mengurangi kemiringan (skewness) dan menstabilkan sebaran data. Peningkatan kualitas
data pada pembersihan data dapat dilihat pada Gambar 4.

Gambar 4. Distribusi data dan deteksi Outlier (Sesudah)

Implementasi metode IQR berhasil mengembalikan distribusi ke dalam rentang klinis yang valid, sebagaimana
divisualisasikan pada Gambar 4. Secara kuantitatif, efektivitas proses ini ditunjukkan oleh penurunan nilai skewness yang
sangat signifikan terutama pada fitur tekanan darah di mana ap_hi turun dari 85,280 menjadi 0,700 dan ap_lo turun dari
33,534 menjadi 0,456. Hal tersebut juga terjadi pada fitur weight yang membaik dari 1,008 menjadi 0,485, height dari -
0,532 menjadi 0,050 dan age dari -0,307 menjadi -0,313. Hasil Pembersihan ini terlihat jelas pada Gambar 4, dimana
sebaran data kini lebih terkonsentrasi pada nilai yang masuk akal secara medis. Melalui tahapan eliminasi outlier,
dihasilkan dataset akhir sebanyak 57.237 sampel.

3.2.2 Rekayasa Fitur

Tahap rekayasa fitur dilakukan pada 57.237 sampel yang telah melewati proses pembersihan data. Proses rekayasa fitur
BMI ini dihasilkan melalui persamaan (4), di mana data height pada dataset menggunakan satuan sentimeter (cm), maka
dilakukan konversi ke meter (m) terlebih dahulu sebelum diterapkan pada persamaan (4). Selain itu, proses rekayasa fitur
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MAP juga dihasilkan melalui persamaan (5), di mana nilai MAP dihitung dengan menggabungkan dua variabel tekanan
darah, yaitu ap_hi dan ap lo melalui persamaan (5). Sebagai representasi data yang telah diproses, struktur dataset yang
telah diperbarui dengan fitur baru disajikan pada Tabel 2.

Tabel 2. Sampel Dataset Rekayasa Fitur

age gender height weight ap hi ap lo cholesterol gluc smoke alco active cardio BMI MAP

50 2 168 62.0 110 80 1 1 0 0 1 0 21.97  90.00
55 1 156 85.0 140 90 3 1 0 0 1 1 3493 106.67

Berdasarkan data yang disajikan pada Tabel 2, penelitian ini menghasilkan dua fitur baru yang bersifat informatif
secara klinis untuk membantu proses klasifikasi. Langkah rekayasa fitur ini dilakukan untuk meningkatkan kualitas dan
relevansi klinis dari prediktor. Fitur BMI dihasilkan dengan menggabungkan dua variabel (height dan weight) menjadi
satu metrik standar yang diakui secara global untuk mengukur obesitas (faktor risiko utama kardiovaskular). Fitur MAP
juga memberikan representasi yang lebih stabil dan bermakna terhadap perfusi organ dibandingkan nilai ap_hi atau ap_lo
secara terpisah. Hal ini penting karena nilai ap_hi dan ap_lo sering kali dapat berfluktuasi secara independen.

3.2.3 Transformasi Data

Tahap transformasi data dilakukan dengan feature binning dan proses encoding. Proses feature binning diterapkan pada
tiga fitur numerik kontinu, yaitu age, BMI, dan MAP menggunakan metode custom width binning berbasis domain-
knowledge binning. Pemetaan dilakukan sesuai dengan persamaan (6) yang mentransformasikan nilai kontinu x menjadi
label diskret y. Sebagai contoh, fitur MAP dikategorikan berdasarkan status perfusi organ (seperti 70 < MAP < 80), yang
dikelompokkan dalam representasi status klinis tertentu yang lebih akurat dibandingkan nilai mentah.

Selanjutnya, proses encoding diterapkan pada 9 variabel prediktor menggunakan metode Label Encoding. Metode
ini mentransformasikan setiap label kategori menjadi representasi bilangan bulat (integer) menggunakan persamaan (7).
Proses label encoding bekerja dengan mengidentifikasi kategori, pemetaan indeks dan mengganti nilai tekstual dengan
angka indeks pasangan untuk menghasilkan format numerik yang seragam. Sebagai hasil dari seluruh rangkaian
transformasi tersebut, struktur dataset yang telah dikonversi ke dalam format integer dapat dilihat pada Tabel 3.

Tabel 3. Sampel Dataset Sesudah Transformasi Data

gender age bin BMI bin MAP bin cholesterol gluc smoke alco active cardio
1 2 1 1 0 0 0 0 1 0
0 3 4 2 2 0 0 0 1 1

Berdasarkan data pada Tabel 3, terlihat bahwa seluruh fitur prediktor maupun variabel target telah memiliki format
numerik yang seragam. Proses ini bukan hanya mengubah format, melainkan metode yang digunakan untuk memastikan
data kompatibel dengan algoritma K-Modes Clustering untuk tahap ekstraksi fitur cluster selanjutnya. Algoritma tersebut
berfokus pada analisis kesamaan kategori antar data, bukan jarak matematis (Euclidean Distance). Transformasi ke dalam
kategori numerik seperti yang ditunjukkan pada Tabel 4 menjadi prasyarat agar ekstraksi fitur klister dapat berjalan akurat.

3.2.4 Ekstraksi Fitur Klaster

Tahap ini bertujuan mengidentifikasi struktur pengelompokan pola tersembunyi pada data kategorikal menggunakan
algoritma K-Modes Clustering dengan metode inisialisasi Huang. Algoritma bekerja dengan meminimalkan total cost
menggunakan persamaan (8) melalui akumulasi ketidakmiripan yang didefinisikan pada persamaan (9). Perhitungan
ketidakmiripan dilakukan dengan membandingkan setiap fitur (j) antara data pasien dan pusat klaster. Sebagai contoh,
perbandingan antara data pasien [age:4, BMI:1, MAP:1] dengan pusat klaster [age:4, BMI:2, MAP:2] menghasilkan nilai
ketidakmiripan 0+1+1=2. Berdasarkan nilai terkecil, setiap data dialokasikan ke klaster tertentu dan diikuti pembaruan
pusat klaster secara berulang hingga mencapai kondisi konvergen di mana tidak ada lagi perubahan keanggotaan.
Penentuan jumlah klaster optimal (K) dievaluasi menggunakan metode Elbow pada tiga skema, yaitu seluruh data,
subset pria, dan subset perempuan. Analisis pada Gambar (5) menyajikan grafik evaluasi untuk mengidentifikasi titik
keseimbangan antara kompleksitas model dan minimalisasi cost guna menjamin kualitas pengelompokan yang dihasilkan.

Metode Elbow untuk K Optimal {Inisialisasi Huang} Metode Elbew untuk K Optimal {Inisialisasi Huang) Metode Elbow untuk K Optimal (Inisialisasi Huang

(2) (b) (c)
Gambar 5. Grafik Analisis Metode Elbow: (a) Seluruh Data, (b) Subset Pria, (c) Subset Perempuan
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Berdasarkan grafik yang disajikan pada Gambar 5, ketiga grafik menunjukkan pola penurunan yang konsisten, di
mana penurunan cost yang paling tajam terjadi pada rentang K=1 ke K=2. Meskipun cost menurun pada K > 2, besaran
penurunannya menjadi semakin kecil dan landai dibandingkan dengan penurunan awal yang tajam. Berdasarkan
karakteristik kurva tersebut, ditetapkan K = 2 sebagai jumlah klaster optimal. Hal ini didasarkan pada prinsip parsimoni
(kesederhanaan), di mana titik K = 2 merepresentasikan pemisahan penting dalam populasi data dan mengindikasikan
bahwa pasien secara alami terbagi menjadi ke dalam dua kategori dominan yang saling bertolak belakang.

Karakteristik spesifik tiap klaster diidentifikasi melalui analisis pusat klaster yang dilakukan terpisah untuk subset
pria dan perempuan. Hasil ekstraksi centroid tersebut disajikan pada Tabel 4 (pria) dan Tabel 5 (perempuan).

Tabel 4. Pusat Klaster (Centroid) pada Subset Pria

gender age bin BMI bin MAP bin cholesterol gluc alco smoke active cardio
Klaster 0 0 4 1 1 0 0 0 0 1 0
Klaster 1 0 5 2 2 0 0 0 0 1 1

Tabel 5. Pusat Klaster (Centroid) pada Subset Perempuan

gender age bin BMI bin MAP bin cholesterol gluc alco smoke active cardio
Klaster 0 1 4 1 1 0 0 0 0 1 0
Klaster 1 1 5 2 2 0 0 0 0 1 1

Hasil pada Tabel 4 dan Tabel 5 menunjukkan algoritma K-Modes Clustering berhasil mengidentifikasi dua pola
risiko yang konsisten pada kedua subset gender. Klaster 0 merepresentasikan segmen pasien risiko rendah, yang ditandai
oleh kelompok usia lebih muda (age bin 4) serta parameter klinis optimal pada kategori BMI_1 dan MAP_1. Mayoritas
klaster 0 tidak terdeteksi risiko kardiovaskular (cardio 0). Sebaliknya, klaster 1 menangkap pola komorbiditas yang jelas.
Pola ini ditandai oleh interaksi antara peningkatan usia (age bin 5), berat badan berlebih (BMI_bin 2) dan hipertensi
(MAP_bin 2). Mayoritas klaster 1 didominasi kuat oleh pasien yang terdiagnosis penyakit kardiovaskular (cardio 1).

Keberhasilan K-Modes Clustering dalam mengidentifikasi pola risko membuktikan adanya struktur internal yang
kuat pada data kategorikal. Hasil klaster dimasukkan ke dalam dataset sebagai fitur prediktor baru. Penambahan fitur
berfungsi memberikan sinyal meta-feature dalam memetakan profil risiko kompleks menjadi satu variabel diskrit yang
informatif. Dalam algoritma Stacking Classifier, fitur klaster tersebut secara sistematis memperjelas batas keputusan
(decision boundary) untuk memisahkan kelas positif dan negatif, terutama pada kasus gejala klinis yang ambigu.

3.2.5Pembagian Data

Dataset dengan total 57.237 sampel dibagi menggunakan rasio 80:20 untuk menjamin konsistensi dan reprodusibilitas
hasil pelatihan. Berdasarkan distribusi pada Tabel 6, 45.789 sampel (80%) ditetapkan sebagai data latih dan 11.448 sampel
(20%) sebagai data uji. data uji ini berfungsi sebagai hold-out set yang dikunci agar tidak terlihat oleh model selama
proses pelatihan, sehingga validitas pengujian performa tetap objektif dan andal.

Tabel 6. Distribusi Data Latih dan Data Uji

Jenis Data Persentase  Jumlah Sampel
Data Latih (Training Set) 45.789 80%
Data Uji (Testing Set) 11.448 20%
Total 52.237 100%

Berdasarkan Tabel 6, Pembagian data dilakukan dengan rasio 80:20 untuk memenuhi kebutuhan kompleksitas
model Stacking Classifier. Alokasi 45.789 sampel (80%) pada data latih menyediakan volume yang cukup bagi model
untuk mempelajari interaksi fitur asli dan fitur klaster secara mendalam untuk mencegah overfitting. Di sisi lain,
penggunaan 11.448 sampel (20%) sebagai data uji menjamin hasil evaluasi yang meyakinkan secara statistik dan objektif
untuk merepresentasikan kinerja model di dunia nyata. Dengan kondisi kelas target yang seimbang, pembagian acak ini
secara konsisten menjaga proporsi kelas pada kedua himpunan data, sehingga validitas proses evaluasi tetap terjaga.

3.3 Seleksi Model

Seleksi model dilakukan dengan mengevaluasi 11 kandidat single classifier melalui optimasi tuning hyperparameter
(GridSearchCV) untuk menemukan kombinasi parameter optimal (P*) dalam ruang pencarian, sesuai persamaan (10).
Proses ini menghasilkan setelan parameter terbaik seperti learning rate, max depth, atau n_estimators. Parameter ini yang
memastikan setiap model bekerja pada kapasitas maksimal sebelum dibandingkan satu sama lain.

Setelah optimasi parameter, setiap model divalidasi menggunakan Stratified 5-Fold Cross-Validation untuk
memperoleh estimasi kinerja yang objektif dan robust. Kinerja akhir setiap model dihitung berdasarkan nilai rata-rata
menggunakan persamaan (11). Hasil pada Tabel 7 menunjukkan dominasi algoritma boosting dengan CAT mencatat
kinerja tertinggi dengan Overall Average 89,63%, disusul tipis oleh XGB sebesar 89.62%. Model berbasis pohon seperti
DT dan RF menunjukkan performa kompetitif dengan rata-rata 89,44% dan 89,40%. Sementara model non-tree seperti
MLP (89,33% ) dan SVC _RBF (89,13%) menunjukkan kapabilitas kuat dalam menangkap pola data yang kompleks.
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Meskipun model linear seperti LR tertinggal dengan Overall Average 83,96%, model ini tetap diintegrasikan ke dalam
stacking karena karakteristik varians yang berbeda dari model kompleks lainnya.

Tabel 7. Hasil Evaluasi Seleksi Model

Model Accuracy  Precision  Recall FI1-Score ROC-AUC Overall Average Computing Time

CAT 88,03%  88,20%  88,03%  88,02%  95,90% 89,63% 13,4635s
XGB 88,01%  88,19% 88,01% 87,99%  95,89% 89,62% 5,1961s
LGBM 87,99%  88,17%  87,99% 87.97%  95,86% 89,60% 7,3890s
GB 87,97%  88,14% 87,97% 87,96%  95,83% 89,57% 15,1887s
DT 87,83%  87,99%  87.83% 87.81%  95,74% 89,44% 0,0622s
RF 87,79%  87,90%  87,79%  87,78%  95,73% 89,40% 8,5578s
MLP 87,68%  87.90%  87.68%  87,66%  95,73% 89,33% 817,7318s
SVC RBF  87.81%  87,95% 87.81% 87,79%  94,31% 89,13% 529,2151s
KNN 86,84%  86,86%  86,85%  86,83%  94,59% 88,39% 0,1487s
LR 82,66%  82,86%  82,66% 82,62%  89,03% 83,96% 0,2992s
Naive Bayes  70,14%  70,84%  70,14%  69,82%  78,12% 71,81% 0,0537s

Berdasarkan Tabel 7, lima model heterogen dipilih sebagai base-learner (level-0) untuk memaksimalkan
efektivitas pelatihan model dan meminimalkan korelasi antar-error. Kelima algoritma ini memiliki peran komplementer:
(1) CAT unggul dalam menangani fitur kategorikal; (2) DT memiliki interpretabilitas dan kemampuan menangkap pola
interaksi fitur secara eksplisit; (3) MLP memodelkan hubungan non-linear kompleks melalui hidden layers dengan
memberikan perspektif global yang berbeda dari pemisahan hierarki model pohon; (4) SVC_RBF memetakan data ke
dimensi tinggi untuk menemukan Ayperplane pemisah; dan (5) LR bertindak sebagai penyeimbang linear. Sebagai
integrator di level-1, XGBoost ditetapkan sebagai meta-learner karena kemampuannya mempelajari pola koreksi yang
rumit dari kombinasi prediksi heterogen. Mekanisme regularisasi yang kuat pada XGBoost efektif mencegah overfitting
selama tahap agregasi, sehingga menghasilkan generalisasi model yang lebih akurat dan stabil.

3.4 Pelatihan Model Stacking Classifier

Tahap pelatihan dilakukan dalam dua tingkatan dengan mengintegrasikan lima base-learner heterogen (CAT, DT, MLP,
SVC RBF, dan LR ) untuk meningkatkan performa dan stabilitas prediksi risiko kardiovaskular. Pada Level-0, setiap
model dilatih menggunakan teknik Stratified 5-Fold Cross-Validation untuk menghasilkan prediksi Out-of-Fold (OOF),
yang berfungsi mencegah kebocoran data selama proses pelatihan. Sesuai dengan persamaan (12), setiap base-learner (j)
pada iterasi (i) menghasilkan nilai prediksi probabilitas (Z) yang kemudian digabungkan dengan fitur passthrough (data
klaster dan variabel klinis) untuk membentuk meta-features. Pengetahuan kolektif ini dirinci pada Tabel 8 dan Tabel 9,
memberikan landasan informasi yang kaya bagi meta-learner untuk melakukan klasifikasi akhir secara lebih akurat.

Tabel 8. Meta-Features Probabilitas (Level-0)
Indeks CAT Proba DT Proba MLP Proba SVC RBF Proba LR Proba

0 0.004050 0.0 2.805315e-11 0.62611 0.434417
1 0.477752 0.642857  8.958141e-02 0.289368 0.480391
2 0.001360 0.0 1.412361e-06 0.060130 0.277788
3 0.999111 1.0 6.180076e-01 0.994257 0.880142
4 0.000295 0.0 1.373506e-06 0.088481 0.072003

Tabel 9. Meta-Features Passthrough

Indeks Cluster Gender age bin BMI bin MAP bin cholesterol gluc  alco  smoke active

0 0.0 0.0 0.0 4.0 2.0 2.0 0.0 0.0 0.0 1.0
1 0.0 0.0 0.0 1.0 1.0 2.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0
3 1.0 0.0 0.0 4.0 1.0 2.0 0.0 0.0 0.0 1.0
4 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0

Analisis pada Tabel 8 menunjukkan variasi skor keyakinan antar model, di mana pada indeks 3, model CAT
(0.999111 ) dan DT (1.0) menunjukkan kesepakatan prediksi yang sangat tinggi. Selain nilai probabilitas, algoritma ini
menerapkan passthrough yang ditunjukkan pada Tabel 9, di mana meneruskan fitur secara langsung sebagai input
tambahan bagi tingkatan selanjutnya. Integrasi fitur klaster hasil K-Modes terbukti memberikan sinyal profil risiko
tambahan yang memperkaya informasi bagi meta-learner dalam mengoptimalkan hasil klasifikasi akhir.

Stabilitas performa model selama tahap pelatihan model sangat bergantung pada konfigurasi hyperparameter yang
diterapkan. Berdasarkan hasil optimasi menggunakan GridSearchCV, setiap komponen model base-learner dan meta-
learner dikonfigurasi dengan parameter spesifik seperti yang dirincikan pada Tabel 10.
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Tabel 10. Parameter Optimal Hasil GridSearchCV
Peran Model Algoritma Parameter Optimal
Base-Learner CAT depth: 6, iterations: 500, 12_leaf reg: 5, learning_rate: 0.03, subsample: 1.0
criterion: entropy, max_depth: 10, min_samples leaf: 4, min samples split: 10,
DT iteri Py _depth: 10, min_samples_leaf: 4, min _samples split: 10
max_features: None
MLP alpha: 0.001, hidden_layer sizes: (256, 128), learning_rate init: 0.0001, max_iter:
500
SVC RBF C: 2.0, class_weight: None, gamma: auto, kernel: rbf, probability: True
LR C: 0.1, penalty: 11, solver: liblinear, max_iter:1000
Meta-Learner XGB Colsample bytree: 0.8, learning rate: 0.01, max depth: 6, n_estimators: 800,

subsample: 0.8

Analisis pada Tabel 10 menunjukkan strategi penyesuaian parameter yang berfokus pada penguatan generalisasi
dan pencegahan overfitting. CAT dikonfigurasi dengan depth: 6 dan terations: 500, serta penggunaan 12 leaf reg: 5
sebagai regulasi L2 untuk mereduksi sensitivitas terhadap noise pada fitur kategorikal hasil K-Modes, sehingga
menghasilkan prediksi yang lebih stabil. Sejalan dengan itu, DT menerapkan mekanisme pre-pruning melalui batasan
max_depth: 10 dan min_samples leaf: 4. Pembatasan ini dilakukan untuk mencegah pohon tumbuh terlalu kompleks
berlebih, sehingga model lebih efektif dalam menangkap struktur keputusan global dari data klinis secara lebih efektif.

MLP menggunakan struktur Aidden layers (256, 128) dan regulasi alpha: 0.0001 untuk memodelkan hubungan
non-linear yang kompleks sekaligus menjaga stabilitas gradien. Pendekatan ini diperkuat oleh SVC RBF yang
memproyeksikan data ke dimensi tinggi untuk pemisahan linear serta menyediakan skor probabilitas sebagai input kaya
informasi bagi meta-learner. Sebagai penyeimbang, LR menerapkan regularisasi L1 (penalty: 11) dengan nilai C: 0.1
untuk melakukan seleksi fitur implisit dengan menyusutkan koefisien fitur yang kurang relevan menjadi nol. Model tetap
sederhana dan efektif dalam mereduksi dampak fitur variabel yang tidak signifikan terhadap hasil akhir klasifikasi.

Setelah data dari base-learner terkumpul dalam dataset Z, tahap selanjutnya adalah pemrosesan pada Level-1
(meta-learner) menggunakan XGBoost. Algoritma ini mengintegrasikan skor probabilitas dan fitur passthrough menjadi
satu keputusan akhir (y) berdasarkan persamaan (14). XGBoost dikonfigurasi dengan strategi slow learning melalui
learning_rate: 0.01 dan n_estimator: 800 agar model dapat mempelajari pola koreksi dari base-learner secara bertahap
dan mendetail. Selain itu, menerapkan subsample: 0.8 (penggunaan 80% data secara acak) untuk mencegah
ketergantungan pada sampel tertentu, schingga meningkatkan kemampuan generalisasi terhadap data baru.

Hasil dari proses perhitungan pada persamaan (13) tersebut disajikan pada Tabel 11, yang memuat skor
probabilitas dan label prediksi akhir untuk sampel data pasien.

Tabel 11. Final Prediction

Indeks  Metalearner Proba  MetalLearner Pred

0 0.000465 0
1 0.999754 1
2 0.000229 0
3 0.999757 1
4 0.000251 0

Analisis pada Tabel 11 menunjukkan bahwa proses level-1 menghasilkan keputusan klasifikasi yang sangat tegas
dengan nilai probabilitas yang mendekati 0 atau 1. Sebagai contoh, skor pada Indeks 1 (0.999754) dan Indeks 0 (0.000465)
mencerminkan tingkat keyakinan tinggi XGBoost dalam mengintegrasikan prediksi base-learner dan data klinis
passthrough. Secara keseluruhan, penerapan parameter optimal dan mekanisme penggabungan ini menciptakan sinergi
prediksi yang akurat, stabil, dan andal untuk data medis pasien kardiovaskular. Dengan mengoreksi bias kolektif dari
model-model dasar, Stacking Classifier mampu menghasilkan batas keputusan (decision boundary) yang sangat presisi.

3.5 Evaluasi Model

Model dievaluasi menggunakan Stratified 5-Fold Cross-Validation untuk menjamin generalisasi yang optimal. Performa
diukur melalui metrik accuracy, precision, recall, F1-score dan ROC-AUC sesuai persamaan (14) hingga (18). Analisis
diperdalam dengan nilai rata-rata performa sesuai persamaan (11) serta efisiensi komputasi melalui waktu eksekusi (detik)
berdasarkan persamaan (19). Hasil evaluasi model Stacking Classifier disajikan pada Tabel 12.

Tabel 12. Hasil Evaluasi Algoritma Stacking Classifier

Model  accuracy precision  recall  FI1-Score  ROC-AUC Overall Average Computing Time
Stacking  87,99%  88,13%  87,99%  87,97% 95,89% 89,59% 7587,7686s

Berdasarkan hasil evaluasi pada Tabel 12, model Stacking menunjukkan kinerja solid dengan akurasi mencapai
87,99%. Dalam konteks diagnosis medis, akurasi bukan satu-satunya tolak ukur. Metrik precision (88,13%), recall
(87,99%), dan FI-score sebesar 87,97%, menunjukkan selisih yang sangat tipis antara metrik tersebut mengindikasikan
model memiliki stabilitas yang baik dan minimalisasi alarm palsu. Kemampuan model dalam membedakan kelas positif
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dan negatif juga terbukti sangat kuat dengan skor ROC-AUC 95,89%, menghasilkan Overall Average sebesar 89,59%.
Namun, algoritma ini memakan waktu komputasi yang sangat tinggi dengan estimasi waktu mencapai 7587,7686 detik.
Efektivitas algoritma Stacking Classifier divalidasi melalui perbandingan dengan seluruh kandidat model,
sebagaimana dirinci pada Tabel 13. Secara teoritis, algoritma ini dirancang untuk meningkatkan kinerja dengan
menggabungkan kekuatan berbagai base-learners. Namun, analisis pada Tabel 13 menunjukkan temuan penting bahwa
kompleksitas algoritma Stacking tidak selalu berbanding lurus dengan peningkatan performa yang signifikan.

Tabel 13. Hasil Perbandingan Evaluasi Semua Model

Model Accuracy Precision Recall FI1-Score ROC-AUC Overall Average Computing Time

CAT 88,03% 88,20%  88,03%  88,02% 95,90% 89,63% 13,4635s
XGB 88,01% 88,19%  88,01%  87,99% 95,89% 89,62% 5,1961s
LGBM 87,99% 88,17%  87,99%  87,97% 95,86% 89,60% 7,3890s
Stacking 87.99% 88.13%  87.99%  87.97% 95.89% 89.59% 7587.7686s
GB 87,97% 88,14%  87,97%  87,96% 95,83% 89,57% 15,1887s
DT 87,83% 87,99%  87,83%  87,81% 95,74% 89,44% 0,0622s
RF 87,79% 87,90%  87,79%  87,78% 95,73% 89,40% 8,5578s
MLP 87,68% 87,90%  87,68%  87,66% 95,73% 89,33% 817,7318s
SVC_RBF 87,81% 87,95%  87,81%  87,79% 94,31% 89,13% 529,2151s
KNN 86,84% 86,86%  86,85%  86,83% 94,59% 88,39% 0,1487s
LR 82,66% 82,86%  82,66%  82,62% 89,03% 83,96% 0,2992s
Naive Bayes  70,14%  70,84%  70,14%  69,82% 78,12% 71,81% 0,0537s

Hasil perbandingan evaluasi semua model pada Tabel 13 menunjukkan temuan menarik bahwa model single
classifier berbasis Gradient Boosting mendominasi peringkat teratas. CAT mencatat kinerja tertinggi dengan akurasi
88,03%, precision 88,20%, recall 88,03%, FI1-Score 88,02%, dan ROC-AUC 95.90%, sedikit mengungguli model
Stacking yang berada di posisi kelima dengan akurasi 87,99%. Terdapat hal mencolok terletak pada efisiensi waktu
komputasi, model Stacking memerlukan durasi pelatihan yang panjang mencapai 7587,7686 detik. Terlihat sangat kontras
dengan CAT yang hanya membutuhkan 13,4635 detik untuk menghasilkan performa yang lebih unggul.

Perbedaan mencolok ini mengindikasikan adanya trade-off yang ekstrem antara kompleksitas model dan efisiensi
komputasi. Algoritma Stacking Classifier meningkatkan waktu komputasi hingga 560 kali lipat tanpa memberikan
peningkatan performa dibandingkan model single classifier yang telah dioptimasi. Temuan ini mengindikasikan beberapa
keterkaitan penting mengenai efektivitas arsitektur model. Dominasi algoritma berbasis Boosting sangat terlihat jelas, di
mana algoritma tersebut terbukti sangat robust dalam menangkap pola non-linear hingga mencapai batas optimal.
Sebaliknya, kinerja base-learner cenderung bersifat redundant sehingga meta-learner (XGBoost) tidak memperoleh
input tambahan yang cukup signifikan untuk meningkatkan performa gabungan secara signifikan.

Hasil penelitian ini memvalidasi efektivitas K-Modes Clustering dan membuktikan bahwa Stacking Classifier
(87,99) mampu mengungguli model MLP (87,28%) milik Bhatt et al. melalui penerapan Stratified 5-Fold Cross-
Validation yang memberikan estimasi performa lebih andal. Meskipun akurasinya sedikit di bawah Sultan et al. (91%),
penelitian ini menjaga integritas data klinis asli tanpa risiko bias dari data sintetik (SMOTE). Temuan ini memperkuat
kesimpulan Liu et al. bahwa kompleksitas ensemble tidak selalu menghasilkan performa yang sepadan. Hasil penelitian
ini menegaskan penggunaan model single classifier yang canggih dan teroptimasi jauh lebih baik secara komputasi dan
efektif dibandingkan menerapkan arsitektur Stacking Classifier yang kompleks tanpa memberikan keuntungan performa.
Dari perspektif deployment, CatBoost layak untuk diterapkan karena memberikan keseimbangan optimal antara akurasi
tinggi dan kecepatan eksekusi yang sangat penting bagi efisiensi komputasi pada aplikasi medis dengan respons cepat.

4. KESIMPULAN

Penerapan K-Modes Clustering dengan parameter optimal K=2 terbukti efektif dalam memetakan profil risiko pasien
yang tersembunyi ke dalam kategori risiko rendah dan tinggi. Temuan ini memvalidasi hasil penelitian Bhatt et al.
mengenai manfaat K-Modes Clustering ke dalam algoritma Stacking Classifier pada data kategorikal. Namun, integrasi
fitur klaster ke dalam algoritma Stacking Classifier (akurasi 87,99% dan ROC-AUC 95,89%) tidak memberikan
keuntungan kinerja dibandingkan model single classifier. Hasil pengujian menunjukkan dominasi model berbasis
Boosting, di mana CatBoost mencatat performa tertinggi dengan accuracy 88,03% dan ROC-AUC 95,90%, mengungguli
model Stacking Classifier secara keseluruhan. Meskipun akurasinya di bawah Sultan et al. (91%), penelitian ini memiliki
keunggulan validitas dengan menjaga integritas data asli tanpa data sintetik (SMOTE) dan menerapkan Stratified 5-Fold
Cross-Validation yang lebih ketat untuk menghasilkan estimasi performa yang robust dan tidak bias. Temuan ini
membuktikan bahwa kapasitas algoritma berbasis Boosting sudah sangat memadai untuk menangkap pola data kompleks.
Dengan adanya penambahan lapisan ensemble cenderung bersifat redundant dan meningkatkan beban komputasi tanpa
memberikan peningkatan performa yang sepadan. Hal ini diperkuat oleh frade-off efisiensi waktu, di mana Stacking
Classifier memerlukan waktu komputasi 560 kali lipat lebih lama (7587,7686 detik) dibandingkan CatBoost (13,4635
detik). Dengan demikian, penelitian ini menyimpulkan bahwa penggunaan model single classifier yang teroptimasi
merupakan pendekatan yang jauh lebih baik dan efektif dibandingkan dengan algoritma Stacking Classifier yang
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kompleks untuk kasus prediksi risiko kardiovaskular. CatBoost menjadi pilihan yang lebih rasional untuk deployment
dengan memberikan frade-off terbaik antara performa model dengan efisiensi komputasi yang unggul, menjadi solusi
ideal untuk sistem deteksi yang memprioritaskan keseimbangan optimal antara kecepatan dan ketepatan prediksi.
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