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Abstrak 

Penyakit kardiovaskular merupakan penyebab utama kematian global. Namun, kompleksitas data medis sering membuat model 
konvensional gagal menangkap pola tersembunyi sehingga performa prediksi menjadi tidak optimal. Penelitian ini mengevaluasi 

efektivitas model hibrida yang mengintegrasikan K-Modes Clustering dengan algoritma Stacking Classifier dan menguji apakah 

kompleksitas model tersebut mampu memberikan peningkatan kinerja yang baik dibandingkan model tunggal. Metodologi melibatkan 

pra-pemrosesan data termasuk penanganan outlier, rekayasa fitur klinis, dan ekstraksi fitur klaster menggunakan K-Modes (K=2). 
Arsitektur Stacking Classifier dibangun menggunakan lima base-learner heterogen yang telah dioptimalkan (CatBoost, Decision Tree, 

MLP, SVC, Logistic Regression) dan XGBoost sebagai meta-learner, divalidasi melalui Stratified 5-Fold Cross-Validation. Hasil 

penelitian menunjukkan bahwa meskipun K-Modes efektif memetakan kategori risiko valid secara klinis, model Stacking Classifier 

(akurasi 87,99% dan ROC-AUC 95,89%), terbukti belum mampu melampaui performa model tunggal terbaik, yaitu CatBoost (akurasi 
88,03% dan ROC-AUC 95,90%). Temuan paling signifikan terletak pada efisiensi waktu komputasi, di mana algoritma Stacking 

Classifier memerlukan waktu komputasi 560 kali lipat lebih lama (7587,7686 detik) dibandingkan CatBoost (13,4635 detik) tanpa 

memberikan peningkatan performa yang sepadan. Hal ini menunjukkan bahwa algoritma berbasis Boosting mampu menangkap pola 

kompleks tanpa memerlukan lapisan ensemble tambahan, sehingga model tunggal yang dioptimalkan lebih direkomendasikan untuk 
implementasi nyata dengan memberikan keseimbangan terbaik antara keakuratan prediksi dan efisiensi waktu komputasi. 

Kata Kunci: Penyakit Kardiovaskular; Stacking Classifier; K-Modes Clustering; Stratified Cross-Validation; Efisiensi Komputasi 

Abstract 

Cardiovascular disease is a leading cause of global death. However, the complexity of medical data often makes conventional models 
fail to capture hidden patterns, resulting in suboptimal predictive performance. This study evaluates the effectiveness of a hybrid model 

that integrates K-Modes Clustering with the Stacking Classifier algorithm and tests whether the model's complexity can provide 

significant performance improvements compared to a single model. The methodology involves data preprocessing including outlier 

handling, clinical feature engineering, and cluster feature extraction using K-Modes (K=2). The Stacking Classifier architecture is built 
using five optimized heterogeneous base-learners (CatBoost, Decision Tree, MLP, SVC, Logistic Regression) and XGBoost as a meta-

learner, validated through Stratified 5-Fold Cross-Validation. The results showed that although K-Modes effectively mapped clinically 

valid risk categories, the Stacking Classifier model (87.99% accuracy and 95.89% ROC-AUC) was not able to surpass the performance 

of the best single model, namely CatBoost (88.03% accuracy and 95.90% ROC-AUC). The most significant finding lies in the 
computational time efficiency, where the Stacking Classifier algorithm required 560 times longer computational time (7587.7686 

seconds) than CatBoost (13.4635 seconds) without providing a commensurate performance improvement. This indicates that Boosting-

based algorithms are able to capture complex patterns without requiring additional ensemble layers, so that an optimized single model 

is more recommended for real-world implementations by providing the best balance between prediction accuracy and computational 
time efficiency. 
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1. PENDAHULUAN  

Penyakit kardiovaskular merupakan masalah kesehatan paling serius di dunia. Jumlah penderita diperkirakan akan terus 

meningkat pada tahun 2025. Sebagai contoh, pada tahun 2022 terdapat 19,8 juta kematian di seluruh dunia. Ini  mencakup 

sekitar 32% dari seluruh kematian, dengan 85% di antaranya disebabkan oleh serangan jantung dan stroke [1]. Data dari 

Institute for Health Metrics and Evaluation (IHME) menunjukkan peningkatan kematian akibat penyakit kardiovaskular 

di Indonesia antara tahun 2020 hingga 2023. Kematian akibat penyakit kardiovaskular pada tahun 2020 memiliki 

persentase sekitar 5,51% dan pada tahun 2023 sekitar 11,47%, terjadi peningkatan dua kali lipat sekitar 5,96% yang 

mengindikasikan adanya peningkatan angka mortalitas [2]. World Health Organization (WHO) memperingatkan bahwa 

tanpa adanya upaya serius untuk mencegah, jumlah kematian dan kasus penyakit kardiovaskular akan terus meningkat. 

Faktor risiko utama kardiovaskular seperti usia, tekanan darah, berat badan, kadar kolesterol, kadar glukosa, dan 

gaya hidup (merokok, olahraga, atau alkohol) merupakan fitur penting dalam pelatihan model machine learning. 

Permasalahan utama bagi model single classifier adalah karakteristik data yang sangat kompleks. Fitur alami penyakit 

kardiovaskular pada dasarnya adalah multifaktorial dan melibatkan hubungan yang sangat kompleks, seringkali bersifat 

non-linear antara berbagai faktor risiko tersebut [3]. Sebagai contoh, dampak dari kolesterol tinggi terhadap risiko 

kardiovaskular dapat diperburuk secara signifikan oleh kondisi status merokok. Hal ini merupakan suatu efek interaktif 

yang penting dan faktor risiko tersebut diketahui sangat terkait satu sama lain [4]. Dengan hal tersebut, model-model 

single classifier gagal menangani hubungan non-linear secara efektif [5] dan cenderung mengabaikan istilah interaksi 

(interaction terms) yang penting antar faktor risiko [4]. Kegagalan dalam menangkap pola-pola kompleks berujung pada 

performa prediktif yang kurang optimal dan keandalan yang terbatas pada model single classifier. 
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Menghadapi keterbatasan model single classifier, penerapan Stacking Classifier menjadi solusi efektif untuk 

menangani kompleksitas fitur dalam deteksi risiko kardiovaskular. Pendekatan ini terbukti efektif dalam meningkatkan 

akurasi klasifikasi risiko kardiovaskular dengan melatih meta-learner secara khusus untuk mempelajari pola terbaik 

ketika menggabungkan berbagai hasil prediksi dari base learner [6]. Strategi pemilihan algoritma single classifier sebagai 

komponen Stacking Classifier didasarkan dengan memaksimalkan keragaman model sekaligus mempertahankan 

performa  model yang kuat [7]. CatBoost memanfaatkan teknik Ordered Boosting untuk menangani fitur kategorikal dan 

mencegah target leakage [8]. Decision Tree menerapkan interaksi fitur secara eksplisit melalui pemisahan rekursif yang 

memberikan perspektif berbeda dari model boosting [9]. Logistic Regression sebagai penyeimbang linear dengan 

memanfaatkan fungsi sigmoid untuk mengestimasi probabilitas kejadian dengan varians yang rendah [10]. XGBoost 

secara internal menggunakan integrasi regularisasi L1 (Lasso) dan L2 (Ridge) untuk mengontrol kompleksitas model dan 

mencegah overfitting secara efektif [11]. MLP memanfaatkan hidden layers dan aktivasi non-linear untuk memodelkan 

hubungan data yang sangat kompleks [12]. Support Vector Classifier with Radial Basis Function Kernel memanfaatkan 

kernel trick RBF untuk memetakan data ke ruang berdimensi tinggi dan menemukan hyperplane pemisah non-linear yang 

optimal [13]. Kombinasi algoritma yang beragam menjadikan meta-learner mampu mengekstraksi wawasan dari berbagai 

perspektif komputasi untuk menghasilkan keputusan akhir yang lebih akurat dan robust. 

Berbagai studi sebelumnya telah membahas potensi algoritma Stacking Classifier dalam klasifikasi risiko 

kardiovaskular. Penelitian Bhatt et al. berfokus pada pra-pemrosesan data kardiovaskular dengan menerapkan K-modes 

Clustering untuk mengekstraksi fitur klaster dari data kategorikal menggunakan metode inisialisasi Huang. Fitur klaster 

tersebut ditambahkan sebagai fitur baru dan diuji pada beberapa algoritma single classifier. Terdapat dua skenario, yaitu 

tanpa tuning dan optimalisasi hyperparameter GridSearchCV. Hasilnya bahwa MLP yang dioptimalisasi dan 

menunjukkan akurasi tertinggi mencapai 87,28%, membuktikan efektivitas K-Modes sebagai teknik feature engineering 

[14]. Penelitian Khan et al. memanfaatkan algoritma Stacking Classifier untuk klasifikasi risiko kardiovaskular dan 

diabetes dengan base-learner terdiri dari Naive Bayes, KNN, Linear Discriminant Analysis, dan Decision Tree, dengan 

SVM sebagai meta-learner. Model Stacking mencapai akurasi 97,35% untuk data diabetes dan 88,71% untuk data 

kardiovaskular, membuktikan SVM sebagai meta-learner yang valid [15]. 

Penelitian Mohapatra et al. mengoptimalkan pra-pemrosesan data melalui Z-score outlier detection dan min-max 

normalization pada data kardiovaskular. Algoritma stacking menggabungkan 10 base-learner beragam, dengan MLP 

sebagai meta-learner. Model stacking lebih unggul dibandingkan single classifier dengan perbandingan akurasi mencapai 

91,8%, precision 92,6%, sensitivity 92,6%, dan specificity 91% [16]. Penelitian Sultan et al. mengembangkan model 

NCDG yang berfokus pada penanganan class imbalance menggunakan teknik SMOTE dan BorderLineSMOTE. 

Arsitektur Stacking Classifier terdiri dari Naive Bayes, CatBoost, dan Decision Tree sebagai base-learner dan Gradient 

Boosting sebagai meta-learner. Model divalidasi menggunakan K-Fold Cross Validation dan menghasilkan akurasi 91%, 

recall 91%, precision 91%, F1-Score 91%, dan AUC-ROC 97%, mengungguli model single classifier [17]. 

Berdasarkan Tinjauan penelitian tersebut, ditemukan celah dalam optimalisasi deteksi risiko kardiovaskular. 

Penelitian Bhatt et al. telah membuktikan efektivitas K-Modes Clustering sebagai teknik feature engineering, namun 

penggunaannya masih terbatas pada model single classifier. Di sisi lain, studi mengenai Stacking Classifier oleh Khan et 

al. dan Mohapatra et al. telah menunjukkan performa unggul, tetapi belum mengintegrasikan fitur berbasis clustering 

untuk menangani kompleksitas data secara mendalam. Selain itu, penggunaan algoritma XGBoost dalam literatur 

ensemble sebelumnya yaitu Mohapatra et al. umumnya hanya diposisikan sebagai base-learner, sehingga potensi sebagai 

meta-learner dalam mengoreksi bias dari berbagai model heterogen belum dieksplorasi secara optimal. 

Penelitian ini mengusulkan model hibrida yang mengintegrasikan fitur klaster dari K-Modes Clustering ke dalam 

algoritma Stacking Classifier. Pemilihan K-Modes Clustering didasarkan pada kemampuan menangani data kategorikal 

melalui dissimilarity measure, yang memberikan informasi baru dengan tetap mempertahankan distribusi data asli. 

Algoritma ini melibatkan lima base-learner (CAT, DT, MLP, SVC_RBF, dan LR) untuk menciptakan diversitas pola 

pembelajaran untuk menangkap hubungan non-linear yang kompleks. Kebaruan utama dalam penelitian ini terletak pada 

pemanfaatan XGBoost sebagai meta-learner. Dengan mekanisme gradient boosting dan fitur regulasi L1/L2 yang kuat, 

XGBoost diharapkan mampu mengoptimalkan prediksi akhir dengan mempelajari bobot kesalahan dari setiap base-

learner secara lebih akurat dan robust. Secara teknis, penelitian ini menyajikan kerangka baru dalam feature engineering 

hibrida yang menggabungkan kekuatan pengelompokan data kategorikal dengan pembelajaran ensemble dan memberikan 

bukti baru mengenai efektivitas XGBoost sebagai pengambil keputusan tingkat akhir. Dengan penelitian ini, diharapkan 

menghasilkan sistem prediksi medis yang lebih akurat dan dapat menjadi landasan bagi praktisi kesehatan dalam 

pengambilan keputusan klinis berbasis data serta mendukung upaya deteksi dini risiko kardiovaskular secara lebih presisi. 

2. METODOLOGI PENELITIAN 

Proses penelitian ini menggunakan metode Data Science Life Cycle. Kerangka tersebut merupakan sebuah konseptualisasi 

penting dalam pengembangan ilmu data dengan menerapkan tahap-tahapan eksperimen [18]. Metodologi Data Science 

Life Cycle mencakup proses yang diperlukan untuk menganalisis, merancang, mengembangkan, dan mengevaluasi 

efektivitas model [19]. Langkah-langkah yang dilakukan dalam penelitian ini ditunjukkan pada Gambar 1. 
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Gambar 1. Alur Penelitian 

Berdasarkan alur pada Gambar 1, proses penelitian dilakukan secara sistematis melalui tahapan pengumpulan data, 

pra-pemrosesan data, seleksi model, pelatihan model Stacking Classifier, hingga evaluasi model. 

2.1 Pengumpulan Data 

Penelitian ini memanfaatkan kumpulan data yang bersumber dari platform Kaggle. Dataset yang digunakan berjudul 

Cardiovascular Disease Dataset, dikumpulkan oleh Svetlana Ulianova. Dataset ini terdiri dari 70.000 data pasien dengan 

12 atribut. Atribut yang digunakan untuk memprediksi risiko kardiovaskular meliputi fitur demografis (age dan gender), 

fitur antropometri (weight dan height), fitur pemeriksaan klinis (tekanan darah sistolik, tekanan darah diastolik,  

kolesterol, dan glukosa), dan fitur gaya hidup (merokok, alkohol, dan olahraga). Variabel target (label) adalah ada atau 

tidak adanya risiko terkena kardiovaskular yang direpresentasikan secara biner (0 untuk sehat dan 1 untuk terkena risiko). 

2.2 Pra-pemrosesan Data 

Pra-pemrosesan data merupakan tahap krusial dalam menyiapkan data mentah menjadi input berkualitas bagi algoritma. 

Kualitas data input secara langsung memengaruhi kinerja dan keandalan algoritma yang akan dibangun. Serangkaian  

proses akan dilakukan melalui beberapa tahapan, meliputi membersihkan, mentransformasi, dan memperkaya dataset. 

2.2.1 Pembersihan Data 

Proses pembersihan data dilakukan melalui tiga tahapan utama yaitu penanganan nilai yang hilang, penghapusan data 

duplikat, dan penanganan outlier. Tahap pertama adalah pengecekan nilai yang hilang pada seluruh atribut dalam dataset. 

Jika terdapat nilai yang hilang, maka atribut numerik diimputasi menggunakan nilai mean. Sementara atribut kategorikal 

diimputasi dengan nilai modus. Selanjutnya, pengecekan data duplikat untuk mengidentifikasi baris data yang identik. 

Data yang identik dihapus untuk memastikan setiap data mewakili individu unik dan menghindari bias dalam hasil 

pelatihan model. 

Tahap selanjutnya proses penanganan outlier. Tahap ini penting dilakukan karena nilai ekstrem dapat 

menyebabkan distorsi pada distribusi data (skewness), menurunkan performa, dan keandalan generalisasi model. 

Penanganan ini difokuskan pada atribut yang bersifat numerik kontinu, seperti usia, berat badan, tinggi badan, tekanan 

darah sistolik dan tekanan darah diastolik. Sebagai langkah diagnostik, analisis skewness dilakukan menggunakan 

persamaan (1) untuk mengidentifikasi atribut dengan tingkat kemiringan tinggi yang mengindikasikan adanya outlier. 

𝐺1 =
𝑛

(𝑛 − 1)(𝑛 − 2)
∑  

𝑛

𝑖−1

(
𝑥𝑖 − 𝑥̅

𝑠
)

3

 

Penjelasan persamaan: 

a. 𝐺1= koefisien kemiringan (skewness). 

b. 𝑛 = jumlah total sampel dalam dataset. 

c. 𝑥𝑖 = nilai data ke-i. 

d. 𝑥̅ = nilai rata-rata (mean) dari data. 

e. 𝑠 = standar deviasi sampel. 

Metode yang digunakan untuk mendeteksi outlier adalah Interquartile Range (IQR). Nilai dianggap sebagai outlier 

jika berada di luar rentang yang didefinisikan oleh kuartil pertama (Q1) dan kuartil ketiga (Q3). IQR diukur rentang antara 

Q1 dengan nilai persentil 25% data terendah dan Q3 dengan nilai persentil 75% data terendah, maka diperoleh IQR 

dengan mengurangi nilai Q3 dan Q1 seperti persamaan (2).  

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

Dalam proses penentuan batas atas (upper bound) dan batas bawah (lower bound) dihitung menggunakan 

persamaan (3), dimana perhitungannya menjumlahkan nilai kuartil atas (Q3) dengan 1.5 kali nilai IQR serta 

mengurangkan nilai kuartil bawah (Q1) dengan 1.5 kali nilai IQR [20].  

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄3 + (1.5 × 𝐼𝑄𝑅), 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − (1.5 × 𝐼𝑄𝑅) 

Nilai 𝑥𝑖 diklasifikasikan sebagai outlier jika memenuhi kondisi 𝑥𝑖< lower bound atau 𝑥𝑖> upper bound. Nilai 

outlier yang ditemukan kemungkinan merepresentasikan kesalahan input atau anomali pengukuran yang tidak mewakili 

populasi secara umum, sehingga data tersebut dihapus. Rangkaian proses pembersihan dilakukan untuk memastikan 

(1) 

(2) 

(3) 
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model dilatih pada data yang berkualitas sehingga dapat meningkatkan performa dan kemampuan generalisasi algoritma 

pada data baru. 

2.2.2 Rekayasa Fitur 

Tahap rekayasa fitur dilakukan untuk menciptakan variabel prediktor baru yang lebih informatif dari atribut yang sudah 

ada, dengan tujuan meningkatkan performa prediktif model. Berdasarkan atribut weight dan height yang terdapat dalam 

dataset, fitur Body Mass Index (BMI) dihitung menggunakan persamaan (4). BMI merupakan indikator standar yang 

digunakan secara klinis untuk mengkategorikan status berat badan (kurang berat badan, normal, kelebihan berat badan, 

atau obesitas) dan merupakan faktor risiko utama penyakit kardiovaskular [21]. 

𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)2
 

Terdapat perhitungan untuk fitur MAP (Mean Arterial Pressure) menggunakan persamaan (5). Fitur ini diturunkan 

dari ap_hi (tekanan darah sistolik) dan ap_lo (tekanan darah diastolik). MAP merupakan rata-rata tekanan arteri selama 

satu siklus jantung dan dianggap sebagai indikator perfusi organ yang lebih baik daripada tekanan darah sistolik atau 

diastolik [22]. Kedua fitur baru ini ditambahkan ke dalam dataset yang akan membantu model dalam training lebih lanjut. 

𝑀𝐴𝑃 =  
𝑎𝑝ℎ𝑖 + (2 × 𝑎𝑝𝑙𝑜)

3
 

2.2.3 Transformasi Data  

Tahap transformasi data mencakup proses feature binning dan encoding data. Feature binning dilakukan dengan 

mengubah fitur numerik kontinu (age, BMI dan MAP) menjadi kategorikal untuk menangkap hubungan linear dan 

menyederhanakan pola bagi model. Setiap kategori dibagi menjadi beberapa kategori berdasarkan metode custom width 

binning berbasis domain-knowledge binning. Proses pemetaan ini mengikuti persamaan (6), di mana nilai fitur numerik 

kontinu (𝑥) ditransformasikan menjadi label kategori tertentu (𝑘𝑖) apabila nilai tersebut berada dalam rentang ambang 

batas atau bin boundaries (𝑏𝑖) yang telah ditentukan. Metode ini dipilih karena data risiko kardiovaskular bersifat non-

linear dan sangat bergantung pada ambang batas (threshold) klinis yang sudah divalidasi.  

𝑦 = 𝑓(𝑥) = 𝑘𝑖, 𝑗𝑖𝑘𝑎 𝑏𝑖−1 ≤ 𝑥 < 𝑏𝑖 

Penentuan ambang batas (𝑏𝑖) didasarkan pada domain-knowledge binning untuk menjamin sensitivitas klinis 

model terhadap risiko kardiovaskular. Fitur age dikategorikan dalam rentang lima tahun (quinquennium) melalui 

pendekatan k=⌊age/5⌋ Pendekatan ini umum dalam studi epidemiologi untuk menangkap pola bagaimana risiko 

meningkat secara signifikan pada kelompok usia tertentu, yang mungkin tidak tertangkap oleh model linear [23]. Fitur 

BMI dikategorikan mengikuti standar global World Health Organization (WHO). Hal ini menyelaraskan data dengan 

definisi klinis obesitas yang merupakan faktor risiko utama kardiovaskular [24]. Fitur MAP dibagi ke dalam rentang 

spesifik untuk merepresentasikan status klinis perfusi organ, terutama dalam mengidentifikasi nilai kritis (misalnya, di 

bawah 70 mmHg yang memiliki arti klinis yang berbeda) [22]. 

Selanjutnya, encoding data diterapkan pada semua fitur kategorikal ke dalam format numerik menggunakan 

metode label encoding. Pendekatan ini merupakan fungsi pemetaan one-to-one mapping dari himpunan kategori ke C 

himpunan bilangan bulat menggunakan persamaan (7). 

𝑓: 𝐶 → {0,1,2, … , 𝑛 − 1} 

Di mana C yaitu himpunan kategori unik C = {𝑐1, 𝑐2, … 𝑐𝑛}. Setiap elemen 𝑐𝑖 dipetakan ke nilai unik 𝑓(𝑐𝑖) = 𝑖. 
Pendekatan ini mengubah data non-numerik menjadi representasi integer unik sebagai langkah awal untuk ekstraksi fitur 

klaster. 

2.2.4 Ekstraksi Fitur Klaster 

Ekstraksi fitur klaster dilakukan menggunakan algoritma K-Modes Clustering untuk mengidentifikasi pola tersembunyi 

pada data kategorikal dengan meminimalkan total dissimilarity (ketidakmiripan) melalui pendekatan simple matching 

dissimilarity. Proses pengelompokan berfokus pada minimalisasi fungsi biaya di dalam klaster (P) bagi seluruh sampel 

data pasien (n) berdasarkan jumlah klaster (k) yang ditetapkan, sebagaimana didefinisikan dalam persamaan (8). 

𝑃(𝑊, 𝑍) = ∑  

𝑛

𝑖=1

∑ 𝑤𝑖𝑙 . 𝑑(𝑋𝑖 , 𝑍𝑙)

𝑘

𝑙=1

 

Di mana 𝑤𝑖𝑙 merupakan matriks partisi biner yang bernilai  jika objek 𝑖 berada pada klaster 𝑙, sementara 𝑑(𝑋𝑖 , 𝑍𝑙) 

adalah ukuran ketidakmiripan antara vektor data pasien ke- 𝑖 (𝑋𝑖) dengan vektor pusat klaster ke- 𝑙 (𝑍𝑙). Nilai 

ketidakmiripan ini dihitung berdasarkan jumlah kategori yang tidak cocok diseluruh fitur kategorikal (𝑚) melalui 

persamaan (9). 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

https://ejurnal.stmik-budidarma.ac.id/index.php/jurikom
https://creativecommons.org/licenses/by/4.0/


JURIKOM (Jurnal Riset Komputer), Vol. 12 No. 6, Desember 2025 

e-ISSN 2715-7393 (Media Online), p-ISSN 2407-389X (Media Cetak) 
DOI 10.30865/jurikom.v12i6.9402 

Hal 1059-1071 

https://ejurnal.stmik-budidarma.ac.id/index.php/jurikom 

Copyright © 2025 The Imam Bari Setiawan, Page 1063  

This Journal is licensed under a Creative Commons Attribution 4.0 International License 

𝑑(𝑋𝑖, 𝑍𝑙) = ∑ 𝛿

𝑚

𝑗=1

(𝑥𝑖𝑗, 𝑧𝑙𝑗) 

Fungsi pembanding δ memberikan nilai 0 jika terdapat kecocokan kategori (𝑥𝑖,𝑗 =  𝑧𝑙,𝑗) dan nilai 1 jika tidak 

cocok (𝑥𝑖,𝑗 ≠  𝑧𝑙,𝑗). Pusat klaster diperbarui secara berulang menggunakan nilai modus dari setiap fitur j untuk 

meminimalkan total biaya dalam klaster [25]. Penentuan jumlah klaster optimal (k) dilakukan melalui metode elbow curve 

dengan mengidentifikasi titik penurunan cost yang paling signifikan [26]. Inisialisasi pusat klaster menggunakan metode 

Huang yang mempertimbangkan frekuensi kategori untuk memastikan hasil klaster yang lebih stabil dan robust [25]. 

Label klaster kemudian ditambahkan ke dataset untuk memperkaya informasi bagi algoritma stacking classifier [27]. 

2.2.5 Pembagian Data 

Proses pembagian data dipisahkan menjadi dua komponen berbeda yaitu training set (80%) dan testing set (20%). 

Pembagian data menjadi dua komponen dilakukan untuk mengevaluasi kinerja terhadap kemampuan generalisasi model 

secara objektif pada data yang belum pernah dilihat sebelumnya. 

2.3 Seleksi Model 

Seleksi model base-learner didasarkan pada pengujian dan evaluasi mendalam terhadap 11 kandidat single classifier 

(mencakup CAT, XGB, LGBM, GB, DT, RF,  MLP, SVC_RBF, KNN, LR, dan Naïve Bayes) yang dioptimalkan melalui 

hyperparameter tuning menggunakan GridSearchCV. Metode ini dilakukan dengan menguji semua kombinasi 

hyperparameter yang telah didefinisikan dalam grid parameter menggunakan persamaan (10). 

𝑃∗ =
arg 𝑚𝑎𝑥

𝑃 ∈ 𝜃
𝑓(𝑃) 

Proses optimasi bertujuan menemukan setelan hyperparameter optimal (P*) di dalam ruang pencarian (𝜃) dengan 

memaksimalkan fungsi skor performa (𝑓(𝑃)), ditunjukkan pada persamaan (11). Model divalidasi menggunakan 

StratifiedKFold 5-fold Cross Validation untuk memastikan estimasi kinerja yang robust dan menjaga proporsi kelas target 

Kinerja setiap model diukur berdasarkan nilai rata-rata performa model di seluruh lipatan menggunakan persamaan (11).  

𝑀̅ =
1

𝐾
∑ 𝑀𝑖

𝐾

𝑖=1

 

Di mana rata-rata kinerja (𝑀̅) dihitung skor metrik setiap lipatan (𝑀𝑖) untuk menentukan peringkat model. 

Berdasarkan evaluasi tersebut, lima algoritma terbaik dipilih sebagai base learner (level-0). Pendekatan ini bertujuan 

untuk menyediakan input yang beragam dan saling melengkapi bagi meta-learner (level-1), sehingga dapat meningkatkan 

kemampuan generalisasi model stacking secara keseluruhan. 

2.4 Pelatihan Model Stacking Classifier 

Proses pelatihan model menerapkan algoritma Stacking Classifier dengan dua tingkatan pembelajaran, disajikan pada 

Gambar 2. Arsitektur ini mengintegrasikan berbagai model untuk meningkatkan performa dan stabilitas prediksi. 

 

Gambar 2. Arsitektur Model 

Berdasarkan Gambar 2. proses pelatihan model dilakukan pada dua tingkatan yaitu base-learner (level-0) dan 

meta-learner (level 1). Pada Level-0 (Base-learner), melibatkan lima model yang telah dioptimalkan melalui 

GridSearchCV (CAT, DT, MLP, SVC_RBF dan LR). Model ini divalidasi menggunakan teknik StratifiedKFold 5-fold 

Cross Validation. Setiap model dilatih pada 4 fold data latih dan menghasilkan Out-of-Fold (OOF) Prediction (Z) pada 1 

fold sisanya. Secara matematis, kumpulan prediksi OOF untuk setiap model j didefinisikan seperti pada persamaan (12). 

𝑍𝑖,𝑗 = ℎ𝑗
(𝑖)(𝑥𝑘), 𝑥𝑘 ∈ 𝑓𝑖  

(10)

D 

(11)

D 

(12)

D 
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Di mana setiap base-learner (hj
(i)

) memprediksi probabilitas (Z) pada sampel lipatan uji (𝑥𝑘) dalam lima kali 

iterasi. Hasil prediksi OOF dari base-learner membentuk Meta-Features (dataset Z) yang diperkaya dengan fitur klinis 

asli dan label cluster melalui melalui mekanisme passthrough sebelum diproses oleh meta-learner. 

Pada tingkatan selanjutnya yaitu Level-1 (Meta-Learner), XGBoost digunakan untuk memproses dataset Z untuk 

menghasilkan keputusan akhir (y) berdasarkan persamaan (13). 

𝑦 = 𝐻(𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5) 

Di mana H mewakili algoritma XGBoost dalam memproses masukan dari kelima model sebelumnya untuk menghasilkan 

Final Prediction (y). Dengan mekanisme ini, XGBoost mampu mengoreksi kesalahan prediksi yang dihasilkan oleh base-

learner secara kolektif untuk menghasilkan performa klasifikasi risiko kardiovaskular yang lebih robust dan akurat. 

2.5 Evaluasi Model 

Evaluasi model divalidasi menggunakan Stratified 5-Fold Cross-Validation dengan dataset dibagi lima fold; empat fold 

digunakan sebagai data latih dan satu fold sisanya sebagai data uji secara bergantian untuk menjamin generalisasi optimal 

dan menjaga keseimbangan distribusi kelas di setiap lipatan. Pengukuran performa didasarkan pada metrik accuracy, 

precision, recall dan F1-score menggunakan persamaan (14), (15), (16), dan (17) turunan dari komponen confusion 

matrix. Komponen tersebut meliputi keberhasilan identifikasi pada kelas positif (True Positive (TP)) dan negatif (True 

Negative (TN)), serta kesalahan klasifikasi pada data negatif (False Positive (FP)) dan positif (False Negative (FN)) [28]. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
∗ 100% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100% 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Evaluasi diperkuat dengan metrik ROC-AUC, yang mengukur hubungan antara True Positive Rate (TPR) dan 

False Positive Rate (FPR) pada nilai threshold secara numerik [29]. Kualitas model dinilai melalui skor AUC (0 hingga 

1), di mana nilai yang mendekati nilai 1 menunjukkan kemampuan pemisahan kelas yang sangat baik, sementara nilai 0.5 

setara dengan prediksi acak [29]. Secara matematis, metrik ini dihitung menggunakan persamaan (18). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Evaluasi lain juga mencakup estimasi biaya komputasi yang diukur melalui waktu eksekusi (detik) untuk menilai 

efisiensi operasional algoritma selama proses pelatihan. Metrik ini dihitung berdasarkan selisih waktu antara dimulainya 

proses pelatihan hingga berakhirnya seluruh tahapan algoritma dalam satuan detik sesuai pada persamaan (19).  

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇𝑠𝑒𝑙𝑒𝑠𝑎𝑖 − 𝑇𝑚𝑢𝑙𝑎𝑖 

Evaluasi waktu ini penting untuk menilai efisiensi operasional algoritma Stacking Classifier yang kompleks agar dapat 

dipastikan bahwa model efektif diimplementasikan pada skenario klinis nyata. 

3. HASIL DAN PEMBAHASAN 

3.1 Pengumpulan Data 

Dataset ini mencakup 70.000 sampel dengan 12 fitur yang diklasifikasikan ke dalam dua label, yaitu tidak berisiko (0) 

dan berisiko (1). Rincian sampel dataset disajikan pada Tabel 1. 

Tabel 1. Sampel Dataset 

age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio 

50 2 168 62.0 110 80 1 1 0 0 1 0 

55 1 156 85.0 140 90 3 1 0 0 1 1 

Berdasarkan Tabel 1, dataset ini mengintegrasikan fitur demografis, klinis, dan gaya hidup sebagai variabel 

independen untuk memprediksi variabel target cardio. Distribusi variabel target menunjukkan keseimbangan, yaitu 

35.021 sampel (50,03%) untuk kelas 0 dan 34.979 sampel (49,97%) untuk kelas 1. Proporsi yang seimbang ini penting 

untuk meminimalkan risiko bias model terhadap kelas mayoritas sehingga menjamin validitas dan keandalan performa. 

(13)

D 

(14)

D 

(15)

D 

(16)

D 

(17)

D 

(18)

D 

(19)

D 
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3.2 Pra-pemrosesan Data 

3.2.1 Pembersihan Data 

Tahap pembersihan data menunjukkan bahwa dari 70.000 sampel tidak ditemukan adanya data yang hilang pada 12 fitur. 

Kondisi awal mengonfirmasi data yang baik dan tidak perlu dilakukan imputasi data. Proses pembersihan data kedua 

adalah mengidentifikasi data duplikat, di mana terdapat 24 baris data duplikat. Seluruh sampel duplikat dihapus dari 

dataset untuk mencegah bias dalam pelatihan model, sehingga jumlah data yang terverifikasi terdapat 69.976 sampel.  

Selanjutnya dilakukan analisis distribusi fitur untuk mendeteksi keberadaan outlier yang dapat mengganggu 

performa algoritma menggunakan persamaan (1). Visualisasi distribusi data disajikan pada Gambar 3. 

 

Gambar 3. Distribusi data dan deteksi Outlier (Sebelum) 

Berdasarkan Gambar 3, analisis distribusi awal menunjukkan adanya kemiringan ekstrem (skewness) pada 

beberapa fitur akibat nilai yang tidak valid secara klinis, seperti tekanan darah dengan nilai dari 10.000 mengindikasikan 

adanya kesalahan input data. Nilai skewness tercatat sebesar 85,280 untuk ap_hi, 33,534 untuk ap_lo, 1,008 untuk weight, 

-0,532 untuk height, dan -0,307 untuk age. Melatih model machine learning pada data yang mustahil secara fisik akan 

menghasilkan model yang tidak dapat digunakan di dunia nyata sehingga perlu dilakukan penanganan outlier. 

Langkah mengembalikan data ke rentang klinis yang valid, melalui eliminasi outlier menggunakan metode IQR. 

menggunakan persamaan (2) dan (3). Metode ini diterapkan secara spesifik pada lima fitur numerik, yaitu age, weight, 

height, ap_hi, dan ap_lo. Proses ini berhasil mengidentifikasi dan menghapus 12.742 sampel yang berada di luar batas 

kewajaran. Perubahan ini efektif mengurangi kemiringan (skewness) dan menstabilkan sebaran data. Peningkatan kualitas 

data pada pembersihan data dapat dilihat pada Gambar 4. 

 

Gambar 4. Distribusi data dan deteksi Outlier (Sesudah) 

Implementasi metode IQR berhasil mengembalikan distribusi ke dalam rentang klinis yang valid, sebagaimana 

divisualisasikan pada Gambar 4. Secara kuantitatif, efektivitas proses ini ditunjukkan oleh penurunan nilai skewness yang 

sangat signifikan terutama pada fitur tekanan darah di mana ap_hi turun dari 85,280 menjadi 0,700 dan ap_lo turun dari 

33,534 menjadi 0,456. Hal tersebut juga terjadi pada fitur weight yang membaik dari 1,008 menjadi 0,485, height dari -

0,532 menjadi 0,050 dan age dari -0,307 menjadi -0,313. Hasil Pembersihan ini terlihat jelas pada Gambar 4, dimana 

sebaran data kini lebih terkonsentrasi pada nilai yang masuk akal secara medis. Melalui tahapan eliminasi outlier, 

dihasilkan dataset akhir sebanyak 57.237 sampel. 

3.2.2 Rekayasa Fitur 

Tahap rekayasa fitur dilakukan pada 57.237 sampel yang telah melewati proses pembersihan data. Proses rekayasa fitur 

BMI ini dihasilkan melalui persamaan (4), di mana data height pada dataset menggunakan satuan sentimeter (cm), maka 

dilakukan konversi ke meter (m) terlebih dahulu sebelum diterapkan pada persamaan (4). Selain itu, proses rekayasa fitur 
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MAP juga dihasilkan melalui persamaan (5), di mana nilai MAP dihitung dengan menggabungkan dua variabel tekanan 

darah, yaitu ap_hi dan ap_lo melalui persamaan (5). Sebagai representasi data yang telah diproses, struktur dataset yang 

telah diperbarui dengan fitur baru disajikan pada Tabel 2. 

Tabel 2. Sampel Dataset Rekayasa Fitur 

age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio BMI MAP 

50 2 168 62.0 110 80 1 1 0 0 1 0 21.97 90.00 

55 1 156 85.0 140 90 3 1 0 0 1 1 34.93 106.67 

Berdasarkan data yang disajikan pada Tabel 2, penelitian ini menghasilkan dua fitur baru yang bersifat informatif 

secara klinis untuk membantu proses klasifikasi. Langkah rekayasa fitur ini dilakukan untuk meningkatkan kualitas dan 

relevansi klinis dari prediktor. Fitur BMI dihasilkan dengan menggabungkan dua variabel (height dan weight) menjadi 

satu metrik standar yang diakui secara global untuk mengukur obesitas (faktor risiko utama kardiovaskular). Fitur MAP 

juga memberikan representasi yang lebih stabil dan bermakna terhadap perfusi organ dibandingkan nilai ap_hi atau ap_lo 

secara terpisah. Hal ini penting karena nilai ap_hi dan ap_lo sering kali dapat berfluktuasi secara independen. 

3.2.3 Transformasi Data 

Tahap transformasi data dilakukan dengan feature binning dan proses encoding. Proses feature binning diterapkan pada 

tiga fitur numerik kontinu, yaitu age, BMI, dan MAP menggunakan metode custom width binning berbasis domain-

knowledge binning. Pemetaan dilakukan sesuai dengan persamaan (6) yang mentransformasikan nilai kontinu x menjadi 

label diskret y. Sebagai contoh, fitur MAP dikategorikan berdasarkan status perfusi organ (seperti 70 < MAP < 80), yang 

dikelompokkan dalam representasi status klinis tertentu yang lebih akurat dibandingkan nilai mentah.  

Selanjutnya, proses encoding diterapkan pada 9 variabel prediktor menggunakan metode Label Encoding. Metode 

ini mentransformasikan setiap label kategori menjadi representasi bilangan bulat (integer) menggunakan persamaan (7). 

Proses label encoding bekerja dengan mengidentifikasi kategori, pemetaan indeks dan mengganti nilai tekstual dengan 

angka indeks pasangan untuk menghasilkan format numerik yang seragam. Sebagai hasil dari seluruh rangkaian 

transformasi tersebut, struktur dataset yang telah dikonversi ke dalam format integer dapat dilihat pada Tabel 3. 

Tabel 3. Sampel Dataset Sesudah Transformasi Data 

gender age_bin BMI_bin MAP_bin cholesterol gluc smoke alco active cardio 

1 2 1 1 0 0 0 0 1 0 

0 3 4 2 2 0 0 0 1 1 

Berdasarkan data pada Tabel 3, terlihat bahwa seluruh fitur prediktor maupun variabel target telah memiliki format 

numerik yang seragam. Proses ini bukan hanya mengubah format, melainkan metode yang digunakan untuk memastikan 

data kompatibel dengan algoritma K-Modes Clustering untuk tahap ekstraksi fitur cluster selanjutnya. Algoritma tersebut 

berfokus pada analisis kesamaan kategori antar data, bukan jarak matematis (Euclidean Distance). Transformasi ke dalam 

kategori numerik seperti yang ditunjukkan pada Tabel 4 menjadi prasyarat agar ekstraksi fitur klister dapat berjalan akurat. 

3.2.4 Ekstraksi Fitur Klaster 

Tahap ini bertujuan mengidentifikasi struktur pengelompokan pola tersembunyi pada data kategorikal menggunakan 

algoritma K-Modes Clustering dengan metode inisialisasi Huang. Algoritma bekerja dengan meminimalkan total cost 

menggunakan persamaan (8) melalui akumulasi ketidakmiripan yang didefinisikan pada persamaan (9). Perhitungan 

ketidakmiripan dilakukan dengan membandingkan setiap fitur (j) antara data pasien dan pusat klaster. Sebagai contoh, 

perbandingan antara data pasien [age:4, BMI:1, MAP:1] dengan pusat klaster [age:4, BMI:2, MAP:2] menghasilkan nilai 

ketidakmiripan 0+1+1=2. Berdasarkan nilai terkecil, setiap data dialokasikan ke klaster tertentu dan diikuti pembaruan 

pusat klaster secara berulang hingga mencapai kondisi konvergen di mana tidak ada lagi perubahan keanggotaan. 

Penentuan jumlah klaster optimal (K) dievaluasi menggunakan metode Elbow pada tiga skema, yaitu seluruh data, 

subset pria, dan subset perempuan. Analisis pada Gambar (5) menyajikan grafik evaluasi untuk mengidentifikasi titik 

keseimbangan antara kompleksitas model dan minimalisasi cost guna menjamin kualitas pengelompokan yang dihasilkan.  

 

(a) 
 

(b) 

 

(c) 

Gambar 5. Grafik Analisis Metode Elbow: (a) Seluruh Data, (b) Subset Pria, (c) Subset Perempuan 
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Berdasarkan grafik yang disajikan pada Gambar 5, ketiga grafik menunjukkan pola penurunan yang konsisten, di 

mana penurunan cost yang paling tajam terjadi pada rentang K=1 ke K=2. Meskipun cost menurun pada K > 2, besaran 

penurunannya menjadi semakin kecil dan landai dibandingkan dengan penurunan awal yang tajam. Berdasarkan 

karakteristik kurva tersebut, ditetapkan K = 2 sebagai jumlah klaster optimal. Hal ini didasarkan pada prinsip parsimoni 

(kesederhanaan), di mana titik K = 2 merepresentasikan pemisahan penting dalam populasi data dan mengindikasikan 

bahwa pasien secara alami terbagi menjadi ke dalam dua kategori dominan yang saling bertolak belakang.  

Karakteristik spesifik tiap klaster diidentifikasi melalui analisis pusat klaster yang dilakukan terpisah untuk subset 

pria dan perempuan. Hasil ekstraksi centroid tersebut disajikan pada Tabel 4 (pria) dan Tabel 5 (perempuan). 

Tabel 4. Pusat Klaster (Centroid) pada Subset Pria 

 gender age_bin BMI_bin MAP_bin cholesterol gluc alco smoke active cardio 

Klaster 0 0 4 1 1 0 0 0 0 1 0 

Klaster 1 0 5 2 2 0 0 0 0 1 1 

Tabel 5. Pusat Klaster (Centroid) pada Subset Perempuan 

 gender age_bin BMI_bin MAP_bin cholesterol gluc alco smoke active cardio 

Klaster 0 1 4 1 1 0 0 0 0 1 0 

Klaster 1 1 5 2 2 0 0 0 0 1 1 

Hasil pada Tabel 4 dan Tabel 5 menunjukkan algoritma K-Modes Clustering berhasil mengidentifikasi dua pola 

risiko yang konsisten pada kedua subset gender. Klaster 0 merepresentasikan segmen pasien risiko rendah, yang ditandai 

oleh kelompok usia lebih muda (age_bin 4) serta parameter klinis optimal pada kategori BMI_1 dan MAP_1. Mayoritas 

klaster 0 tidak terdeteksi risiko kardiovaskular (cardio 0). Sebaliknya, klaster 1 menangkap pola komorbiditas yang jelas. 

Pola ini ditandai oleh interaksi antara peningkatan usia (age_bin 5), berat badan berlebih (BMI_bin 2) dan hipertensi 

(MAP_bin 2). Mayoritas klaster 1 didominasi kuat oleh pasien yang terdiagnosis penyakit kardiovaskular (cardio 1). 

Keberhasilan K-Modes Clustering dalam mengidentifikasi pola risko membuktikan adanya struktur internal yang 

kuat pada data kategorikal. Hasil klaster dimasukkan ke dalam dataset sebagai fitur prediktor baru. Penambahan fitur 

berfungsi memberikan sinyal meta-feature dalam memetakan profil risiko kompleks menjadi satu variabel diskrit yang 

informatif. Dalam algoritma Stacking Classifier, fitur klaster tersebut secara sistematis memperjelas batas keputusan 

(decision boundary) untuk memisahkan kelas positif dan negatif, terutama pada kasus gejala klinis yang ambigu. 

3.2.5 Pembagian Data 

Dataset dengan total 57.237 sampel dibagi menggunakan rasio 80:20 untuk menjamin konsistensi dan reprodusibilitas 

hasil pelatihan. Berdasarkan distribusi pada Tabel 6, 45.789 sampel (80%) ditetapkan sebagai data latih dan 11.448 sampel 

(20%) sebagai data uji. data uji ini berfungsi sebagai hold-out set yang dikunci agar tidak terlihat oleh model selama 

proses pelatihan, sehingga validitas pengujian performa tetap objektif dan andal. 

Tabel 6. Distribusi Data Latih dan Data Uji 

Jenis Data Persentase Jumlah Sampel 

Data Latih (Training Set) 45.789 80% 

Data Uji (Testing Set) 11.448 20% 

Total 52.237 100% 

Berdasarkan Tabel 6, Pembagian data dilakukan dengan rasio 80:20 untuk memenuhi kebutuhan kompleksitas 

model Stacking Classifier. Alokasi 45.789 sampel (80%) pada data latih menyediakan volume yang cukup bagi model 

untuk mempelajari interaksi fitur asli dan fitur klaster secara mendalam untuk mencegah overfitting. Di sisi lain, 

penggunaan 11.448 sampel (20%) sebagai data uji menjamin hasil evaluasi yang meyakinkan secara statistik dan objektif 

untuk merepresentasikan kinerja model di dunia nyata. Dengan kondisi kelas target yang seimbang, pembagian acak ini 

secara konsisten menjaga proporsi kelas pada kedua himpunan data, sehingga validitas proses evaluasi tetap terjaga. 

3.3 Seleksi Model 

Seleksi model dilakukan dengan mengevaluasi 11 kandidat single classifier melalui optimasi tuning hyperparameter 

(GridSearchCV) untuk menemukan kombinasi parameter optimal (P*) dalam ruang pencarian, sesuai persamaan (10). 

Proses ini menghasilkan setelan parameter terbaik seperti learning rate, max depth, atau n_estimators. Parameter ini yang 

memastikan setiap model bekerja pada kapasitas maksimal sebelum dibandingkan satu sama lain. 

Setelah optimasi parameter, setiap model divalidasi menggunakan Stratified 5-Fold Cross-Validation untuk 

memperoleh estimasi kinerja yang objektif dan robust. Kinerja akhir setiap model dihitung berdasarkan nilai rata-rata 

menggunakan persamaan (11). Hasil pada Tabel 7 menunjukkan dominasi algoritma boosting dengan CAT mencatat 

kinerja tertinggi dengan Overall Average 89,63%, disusul tipis oleh XGB sebesar 89.62%. Model berbasis pohon seperti 

DT dan RF menunjukkan performa kompetitif dengan rata-rata 89,44% dan 89,40%. Sementara model non-tree seperti 

MLP (89,33% ) dan SVC_RBF  (89,13%) menunjukkan kapabilitas kuat dalam menangkap pola data yang kompleks. 
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Meskipun model linear seperti LR tertinggal dengan Overall Average 83,96%, model ini tetap diintegrasikan ke dalam 

stacking karena karakteristik varians yang berbeda dari model kompleks lainnya. 

Tabel 7. Hasil Evaluasi Seleksi Model 

Model Accuracy Precision Recall F1-Score ROC-AUC Overall Average Computing Time 

CAT 88,03% 88,20% 88,03% 88,02% 95,90% 89,63% 13,4635s 

XGB 88,01% 88,19% 88,01% 87,99% 95,89% 89,62% 5,1961s 

LGBM 87,99% 88,17% 87,99% 87,97% 95,86% 89,60% 7,3890s 

GB 87,97% 88,14% 87,97% 87,96% 95,83% 89,57% 15,1887s 

DT 87,83% 87,99% 87,83% 87,81% 95,74% 89,44% 0,0622s 

RF 87,79% 87,90% 87,79% 87,78% 95,73% 89,40% 8,5578s 

MLP 87,68% 87,90% 87,68% 87,66% 95,73% 89,33% 817,7318s 

SVC_RBF 87,81% 87,95% 87,81% 87,79% 94,31% 89,13% 529,2151s 

KNN 86,84% 86,86% 86,85% 86,83% 94,59% 88,39% 0,1487s 

LR 82,66% 82,86% 82,66% 82,62% 89,03% 83,96% 0,2992s 

Naïve Bayes 70,14% 70,84% 70,14% 69,82% 78,12% 71,81% 0,0537s 

Berdasarkan Tabel 7, lima model heterogen dipilih sebagai base-learner (level-0) untuk memaksimalkan 

efektivitas pelatihan model dan meminimalkan korelasi antar-error. Kelima algoritma ini memiliki peran  komplementer: 

(1) CAT unggul dalam menangani fitur kategorikal; (2) DT memiliki interpretabilitas dan kemampuan menangkap pola 

interaksi fitur secara eksplisit; (3) MLP memodelkan hubungan non-linear kompleks melalui hidden layers dengan 

memberikan perspektif global yang berbeda dari pemisahan hierarki model pohon; (4) SVC_RBF memetakan data ke 

dimensi tinggi untuk menemukan hyperplane pemisah; dan (5) LR bertindak sebagai penyeimbang linear. Sebagai 

integrator di level-1, XGBoost ditetapkan sebagai meta-learner karena kemampuannya mempelajari pola koreksi yang 

rumit dari kombinasi prediksi heterogen. Mekanisme regularisasi yang kuat pada XGBoost efektif mencegah overfitting 

selama tahap agregasi, sehingga menghasilkan generalisasi model yang lebih akurat dan stabil. 

3.4 Pelatihan Model Stacking Classifier 

Tahap pelatihan dilakukan dalam dua tingkatan dengan mengintegrasikan lima base-learner heterogen (CAT, DT, MLP, 

SVC_RBF, dan LR ) untuk meningkatkan performa dan stabilitas prediksi risiko kardiovaskular. Pada Level-0, setiap 

model dilatih menggunakan teknik Stratified 5-Fold Cross-Validation untuk menghasilkan prediksi Out-of-Fold (OOF), 

yang berfungsi mencegah kebocoran data selama proses pelatihan. Sesuai dengan persamaan (12), setiap base-learner (j) 

pada iterasi (i) menghasilkan nilai prediksi probabilitas (Z) yang kemudian digabungkan dengan fitur passthrough (data 

klaster dan variabel klinis) untuk membentuk meta-features. Pengetahuan kolektif ini dirinci pada Tabel 8 dan Tabel 9, 

memberikan landasan informasi yang kaya bagi meta-learner untuk melakukan klasifikasi akhir secara lebih akurat. 

Tabel 8. Meta-Features Probabilitas (Level-0) 

Indeks CAT_Proba DT_Proba MLP_Proba SVC_RBF_Proba LR_Proba 

0 0.004050 0.0 2.805315e-11 0.62611 0.434417 

1 0.477752 0.642857 8.958141e-02 0.289368 0.480391 

2 0.001360 0.0 1.412361e-06 0.060130 0.277788 

3 0.999111 1.0 6.180076e-01 0.994257 0.880142 

4 0.000295 0.0 1.373506e-06 0.088481 0.072003 

Tabel 9. Meta-Features Passthrough 

Indeks Cluster Gender age_bin BMI_bin MAP_bin cholesterol gluc alco smoke active 

0 0.0 0.0 0.0 4.0 2.0 2.0 0.0 0.0 0.0 1.0 

1 0.0 0.0 0.0 1.0 1.0 2.0 0.0 0.0 0.0 0.0 

2 0.0 0.0 0.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0 

3 1.0 0.0 0.0 4.0 1.0 2.0 0.0 0.0 0.0 1.0 

4 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 

Analisis pada Tabel 8 menunjukkan variasi skor keyakinan antar model, di mana pada indeks 3, model CAT 

(0.999111 ) dan DT (1.0) menunjukkan kesepakatan prediksi yang sangat tinggi. Selain nilai probabilitas, algoritma ini 

menerapkan passthrough yang ditunjukkan pada Tabel 9, di mana meneruskan fitur secara langsung sebagai input 

tambahan bagi tingkatan selanjutnya. Integrasi fitur klaster hasil K-Modes terbukti memberikan sinyal profil risiko 

tambahan yang memperkaya informasi bagi meta-learner dalam mengoptimalkan hasil klasifikasi akhir. 

Stabilitas performa model selama tahap pelatihan model sangat bergantung pada konfigurasi hyperparameter yang 

diterapkan. Berdasarkan hasil optimasi menggunakan GridSearchCV, setiap komponen model base-learner dan meta-

learner dikonfigurasi dengan parameter spesifik seperti yang dirincikan pada Tabel 10. 
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Tabel 10. Parameter Optimal Hasil GridSearchCV 

Peran Model Algoritma Parameter Optimal 

Base-Learner CAT depth: 6, iterations: 500, l2_leaf_reg: 5, learning_rate: 0.03, subsample: 1.0 

 DT 
criterion: entropy, max_depth: 10, min_samples_leaf: 4, min_samples_split: 10, 

max_features: None 

 MLP 
alpha: 0.001, hidden_layer_sizes: (256, 128), learning_rate_init: 0.0001, max_iter: 

500 

 SVC_RBF C: 2.0, class_weight: None, gamma: auto, kernel: rbf, probability: True 

 LR C: 0.1, penalty: l1, solver: liblinear, max_iter:1000 

Meta-Learner XGB 
Colsample_bytree: 0.8, learning_rate: 0.01, max_depth: 6, n_estimators: 800, 

subsample: 0.8 

Analisis pada Tabel 10 menunjukkan strategi penyesuaian parameter yang berfokus pada penguatan generalisasi 

dan pencegahan overfitting. CAT dikonfigurasi dengan depth: 6 dan terations: 500, serta penggunaan l2_leaf_reg: 5 

sebagai regulasi L2 untuk mereduksi sensitivitas terhadap noise pada fitur kategorikal hasil K-Modes, sehingga 

menghasilkan prediksi yang lebih stabil. Sejalan dengan itu, DT menerapkan mekanisme pre-pruning melalui batasan 

max_depth: 10 dan min_samples_leaf: 4. Pembatasan ini dilakukan untuk mencegah pohon tumbuh terlalu kompleks 

berlebih, sehingga model lebih efektif dalam menangkap struktur keputusan global dari data klinis secara lebih efektif. 

MLP menggunakan struktur hidden layers (256, 128) dan regulasi alpha: 0.0001 untuk memodelkan hubungan 

non-linear yang kompleks sekaligus menjaga stabilitas gradien. Pendekatan ini diperkuat oleh SVC_RBF yang 

memproyeksikan data ke dimensi tinggi untuk pemisahan linear serta menyediakan skor probabilitas sebagai input kaya 

informasi bagi meta-learner. Sebagai penyeimbang, LR menerapkan regularisasi L1 (penalty: l1) dengan nilai C: 0.1 

untuk melakukan seleksi fitur implisit dengan menyusutkan koefisien fitur yang kurang relevan menjadi nol. Model tetap 

sederhana dan efektif dalam mereduksi dampak fitur variabel yang tidak signifikan terhadap hasil akhir klasifikasi.  

Setelah data dari base-learner terkumpul dalam dataset Z, tahap selanjutnya adalah pemrosesan pada Level-1 

(meta-learner) menggunakan XGBoost. Algoritma ini mengintegrasikan skor probabilitas dan fitur passthrough menjadi 

satu keputusan akhir (y) berdasarkan persamaan (14). XGBoost dikonfigurasi dengan strategi slow learning melalui 

learning_rate: 0.01 dan n_estimator: 800 agar model dapat mempelajari pola koreksi dari base-learner secara bertahap 

dan mendetail. Selain itu, menerapkan subsample: 0.8 (penggunaan 80% data secara acak) untuk mencegah 

ketergantungan pada sampel tertentu, sehingga meningkatkan kemampuan generalisasi terhadap data baru. 

Hasil dari proses perhitungan pada persamaan (13) tersebut disajikan pada Tabel 11, yang memuat skor 

probabilitas dan label prediksi akhir untuk sampel data pasien. 

Tabel 11. Final Prediction 

Indeks MetaLearner_Proba MetaLearner_Pred 

0 0.000465 0 

1 0.999754 1 

2 0.000229 0 

3 0.999757 1 

4 0.000251 0 

Analisis pada Tabel 11 menunjukkan bahwa proses level-1 menghasilkan keputusan klasifikasi yang sangat tegas 

dengan nilai probabilitas yang mendekati 0 atau 1. Sebagai contoh, skor pada Indeks 1 (0.999754) dan Indeks 0 (0.000465) 

mencerminkan tingkat keyakinan tinggi XGBoost dalam mengintegrasikan prediksi base-learner dan data klinis 

passthrough. Secara keseluruhan, penerapan parameter optimal dan mekanisme penggabungan ini menciptakan sinergi 

prediksi yang akurat, stabil, dan andal untuk data medis pasien kardiovaskular. Dengan mengoreksi bias kolektif dari 

model-model dasar, Stacking Classifier mampu menghasilkan batas keputusan (decision boundary) yang sangat presisi. 

3.5 Evaluasi Model 

Model dievaluasi menggunakan Stratified 5-Fold Cross-Validation untuk menjamin generalisasi yang optimal. Performa 

diukur melalui metrik accuracy, precision, recall, F1-score dan ROC-AUC sesuai persamaan (14) hingga (18). Analisis 

diperdalam dengan nilai rata-rata performa sesuai persamaan (11) serta efisiensi komputasi melalui waktu eksekusi (detik) 

berdasarkan persamaan (19). Hasil evaluasi model Stacking Classifier disajikan pada Tabel 12.  

Tabel 12. Hasil Evaluasi Algoritma Stacking Classifier 

Model accuracy precision recall F1-Score ROC-AUC Overall Average Computing Time 

Stacking 87,99% 88,13% 87,99% 87,97% 95,89% 89,59% 7587,7686s 

Berdasarkan hasil evaluasi pada Tabel 12, model Stacking menunjukkan kinerja solid dengan akurasi mencapai 

87,99%. Dalam konteks diagnosis medis, akurasi bukan satu-satunya tolak ukur. Metrik precision (88,13%), recall 

(87,99%), dan F1-score sebesar 87,97%, menunjukkan selisih yang sangat tipis antara metrik tersebut mengindikasikan 

model memiliki stabilitas yang baik dan minimalisasi alarm palsu. Kemampuan model dalam membedakan kelas positif 
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dan negatif juga terbukti sangat kuat dengan skor ROC-AUC 95,89%, menghasilkan Overall Average sebesar 89,59%. 

Namun, algoritma ini memakan waktu komputasi yang sangat tinggi dengan estimasi waktu mencapai 7587,7686 detik. 

Efektivitas algoritma Stacking Classifier divalidasi melalui perbandingan dengan seluruh kandidat model, 

sebagaimana dirinci pada Tabel 13. Secara teoritis, algoritma ini dirancang untuk meningkatkan kinerja dengan 

menggabungkan kekuatan berbagai base-learners. Namun, analisis pada Tabel 13 menunjukkan temuan penting bahwa 

kompleksitas algoritma Stacking tidak selalu berbanding lurus dengan peningkatan performa yang signifikan.  

Tabel 13. Hasil Perbandingan Evaluasi Semua Model 

Model Accuracy Precision Recall F1-Score ROC-AUC Overall Average Computing Time 

CAT 88,03% 88,20% 88,03% 88,02% 95,90% 89,63% 13,4635s 

XGB 88,01% 88,19% 88,01% 87,99% 95,89% 89,62% 5,1961s 

LGBM 87,99% 88,17% 87,99% 87,97% 95,86% 89,60% 7,3890s 

Stacking 87.99% 88.13% 87.99% 87.97% 95.89% 89.59% 7587.7686s 

GB 87,97% 88,14% 87,97% 87,96% 95,83% 89,57% 15,1887s 

DT 87,83% 87,99% 87,83% 87,81% 95,74% 89,44% 0,0622s 

RF 87,79% 87,90% 87,79% 87,78% 95,73% 89,40% 8,5578s 

MLP 87,68% 87,90% 87,68% 87,66% 95,73% 89,33% 817,7318s 

SVC_RBF 87,81% 87,95% 87,81% 87,79% 94,31% 89,13% 529,2151s 

KNN 86,84% 86,86% 86,85% 86,83% 94,59% 88,39% 0,1487s 

LR 82,66% 82,86% 82,66% 82,62% 89,03% 83,96% 0,2992s 

Naïve Bayes 70,14% 70,84% 70,14% 69,82% 78,12% 71,81% 0,0537s 

Hasil perbandingan evaluasi semua model pada Tabel 13 menunjukkan temuan menarik bahwa model single 

classifier berbasis Gradient Boosting mendominasi peringkat teratas. CAT mencatat kinerja tertinggi dengan akurasi 

88,03%, precision 88,20%, recall 88,03%, F1-Score 88,02%, dan ROC-AUC 95.90%, sedikit mengungguli model 

Stacking yang berada di posisi kelima dengan akurasi 87,99%. Terdapat hal mencolok terletak pada efisiensi waktu 

komputasi, model Stacking memerlukan durasi pelatihan yang panjang mencapai 7587,7686 detik. Terlihat sangat kontras 

dengan CAT yang hanya membutuhkan 13,4635 detik untuk menghasilkan performa yang lebih unggul.  

Perbedaan mencolok ini mengindikasikan adanya trade-off yang ekstrem antara kompleksitas model dan efisiensi 

komputasi.  Algoritma Stacking Classifier meningkatkan waktu komputasi hingga 560 kali lipat tanpa memberikan 

peningkatan performa dibandingkan model single classifier yang telah dioptimasi. Temuan ini mengindikasikan beberapa 

keterkaitan penting mengenai efektivitas arsitektur model. Dominasi algoritma berbasis Boosting sangat terlihat jelas, di 

mana algoritma tersebut terbukti sangat robust dalam menangkap pola non-linear hingga mencapai batas optimal. 

Sebaliknya, kinerja base-learner cenderung bersifat redundant sehingga meta-learner (XGBoost) tidak memperoleh 

input tambahan yang cukup signifikan untuk meningkatkan performa gabungan secara signifikan. 

Hasil penelitian ini memvalidasi efektivitas K-Modes Clustering dan membuktikan bahwa Stacking Classifier 

(87,99) mampu mengungguli model MLP (87,28%) milik Bhatt et al. melalui penerapan Stratified 5-Fold Cross-

Validation yang memberikan estimasi performa lebih andal. Meskipun akurasinya sedikit di bawah Sultan et al. (91%), 

penelitian ini menjaga integritas data klinis asli tanpa risiko bias dari data sintetik (SMOTE). Temuan ini memperkuat 

kesimpulan Liu et al. bahwa kompleksitas ensemble tidak selalu menghasilkan performa yang sepadan. Hasil penelitian 

ini menegaskan penggunaan model single classifier yang canggih dan teroptimasi jauh lebih baik secara komputasi dan 

efektif dibandingkan menerapkan arsitektur Stacking Classifier yang kompleks tanpa memberikan keuntungan performa. 

Dari perspektif deployment, CatBoost layak untuk diterapkan karena memberikan keseimbangan optimal antara akurasi 

tinggi dan kecepatan eksekusi yang sangat penting bagi efisiensi komputasi pada aplikasi medis dengan respons cepat. 

4. KESIMPULAN 

Penerapan K-Modes Clustering dengan parameter optimal K=2 terbukti efektif dalam memetakan profil risiko pasien 

yang tersembunyi ke dalam kategori risiko rendah dan tinggi. Temuan ini memvalidasi hasil penelitian Bhatt et al. 

mengenai manfaat K-Modes Clustering ke dalam algoritma Stacking Classifier pada data kategorikal. Namun, integrasi 

fitur klaster ke dalam algoritma Stacking Classifier (akurasi 87,99% dan ROC-AUC 95,89%) tidak memberikan 

keuntungan kinerja dibandingkan model single classifier. Hasil pengujian menunjukkan dominasi model berbasis 

Boosting, di mana CatBoost mencatat performa tertinggi dengan accuracy 88,03% dan ROC-AUC 95,90%, mengungguli 

model Stacking Classifier secara keseluruhan. Meskipun akurasinya di bawah Sultan et al. (91%), penelitian ini memiliki 

keunggulan validitas dengan menjaga integritas data asli tanpa data sintetik (SMOTE) dan menerapkan Stratified 5-Fold 

Cross-Validation yang lebih ketat untuk menghasilkan estimasi performa yang robust dan tidak bias. Temuan ini 

membuktikan bahwa kapasitas algoritma berbasis Boosting sudah sangat memadai untuk menangkap pola data kompleks. 

Dengan adanya penambahan lapisan ensemble cenderung bersifat redundant dan meningkatkan beban komputasi tanpa 

memberikan peningkatan performa yang sepadan. Hal ini diperkuat oleh trade-off efisiensi waktu, di mana Stacking 

Classifier memerlukan waktu komputasi 560 kali lipat lebih lama (7587,7686 detik) dibandingkan CatBoost (13,4635 

detik). Dengan demikian, penelitian ini menyimpulkan bahwa penggunaan model single classifier yang teroptimasi 

merupakan pendekatan yang jauh lebih baik dan efektif dibandingkan dengan algoritma Stacking Classifier yang 
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kompleks untuk kasus prediksi risiko kardiovaskular. CatBoost menjadi pilihan yang lebih rasional untuk deployment 

dengan memberikan trade-off terbaik antara performa model dengan efisiensi komputasi yang unggul, menjadi solusi 

ideal untuk sistem deteksi yang memprioritaskan keseimbangan optimal antara kecepatan dan ketepatan prediksi. 
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