Implementasi Metode Clustering Untuk Analisa Data Set Penderita Demam Berdarah Menggunakan Algoritma K-Medoins

 Fensi Andi Putra Hia (Universitas Budi Darma, Medan, Indonesia)
 (*)Dito Putro Utoma Mail (Universitas Budi Darma, Medan, Indonesia)
 Soeb Aripin (Universitas Budi Darma, Medan, Indonesia)

(*) Corresponding Author

Abstract

Dengue hemorrhagic fever (DHF) is an infection caused by the dengue virus which can cause severe fever. DHF is one of the symptomatic manifestations of dengue virus infection. Dengue fever is still a serious problem for public health. The Nias Island Health Service, especially in Main Nias Regency, has the task of assisting the community in dealing with cases of dengue fever. To make it easier for the Nias District Health Service to handle and prevent dengue fever cases in Nias District, groupings were carried out based on population and the number of cases that occurred in 10 sub-districts in Nias District. So that the Nias Regency Health Service can take appropriate steps to overcome and prevent cases of dengue fever in the future. In this research, data mining analysis was carried out using the Clustering technique using the K-Medoids method. The use of the K-Medoids algorithm is said to be better in grouping datasets compared to k-means because K-Medoids is an effective clustering method for dealing with small datasets. With a data mining approach which aims to find out areas with the lowest and highest levels of dengue fever. It is hoped that this research can provide information to the government regarding clusters of dengue fever cases in the Nias Main district area in order to reduce the number of dengue fever cases in the following years. In applying the K-Medoids Clustering method to complete the calculations, the data taken is data from the dengue community of Nias Main Regency in the 4 year period, namely from 2020 to 2023. Somolo-Molo, Hiliduho, Hiliserangkai, Botomuzoi, are included in cluster 1 which indicates that The sub-district is a sub-district that experiences a low level of dengue hemorrhagic fever in handling dengue hemorrhagic fever. Meanwhile, Idanogawo, Bawalato, Uluhawo, Gido, Sogaeadu, and Mau sub-districts are included in cluster 2 where the sub-districts are priority sub-districts for handling dengue fever on Nias Island because they experience high levels of dengue fever cases.

Keywords


DHF; Nias; K-Medoids; Clustering

Full Text:

PDF


Article Metrics

Abstract view : 23 times
PDF - 17 times

References

B. Choresyo, S. A. Nulhaqim, and H. Wibowo, “Kesadaran Masyarakat Terhadap Penyakit Mental,” Prosiding Penelitian dan Pengabdian kepada Masyarakat, vol. 2, no. 3, pp. 381–387, 2015, doi: 10.24198/jppm.v2i3.13587.

Sukohar, “Fakultas Kedokteran Universitas Lampung Demam Berdarah Dengue ( DBD ) Fakultas Kedokteran Universitas Lampung,” Medula, vol. 2, no. 2, pp. 1–15, 2014.

T. Y. P. Gustam, “Gambaran Kasus Demam Berdarah Dengue Di Kabupaten Jombang,” Prepotif : Jurnal Kesehatan Masyarakat, vol. 7, no. 3, pp. 16072–16077, 2023, doi: 10.31004/prepotif.v7i3.19093.

A. Amrullah, T. M. Prasetyo, B. N. Sari, U. Singaperbangsa, and K. Abstract, “Analisis Komparasi Clustering Tingkat Penyebaran Demam Berdarah Dengue Dengan Algoritma K-Means dan K-Medoids,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 16, pp. 1–10, 2022.

“473-Article Text-2239-2-10-20230417”.

S. Aripin, T. Gulo, and G. P. N. S. P. A. Angin, “BEES : Bulletin of Electrical and Electronics Engineering Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus,” BEES: Bulletin of Electrical and Electronics Engineering, vol. 3, no. 3, pp. 139–146, 2023.

D. R. Agustian and B. A. Darmawan, “Analisis Clustering Demam Berdarah Dengue Dengan Algoritma K-Medoids (Studi Kasus Kabupaten Karawang),” JIKO (Jurnal Informatika dan Komputer), vol. 6, no. 1, p. 18, 2022, doi: 10.26798/jiko.v6i1.504.

M. Minarni, E. I. Sari, A. Syahrani, and P. Mandarani, “Klasterisasi Penyakit Menggunakan Algoritma K-Medoids pada Dinas Kesehatan Kabupaten Agam,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 10, no. 3, p. 137, 2021, doi: 10.23887/janapati.v10i3.34904.

P. Dbd and D. Rsud, “Integrasi Algoritma Naïve Bayes Dan Website Untuk Deteksi Dini,” vol. 5, no. 1, pp. 17–24, 2024, doi: 10.47065/bit.v5i1.1152.

A. Iskandar, “Penerapan Algoritma K-Medoids Untuk Clustering Prioritas Penerima Beasiswa,” Journal of Information System Research (JOSH), vol. 4, no. 2, pp. 508–514, 2023, doi: 10.47065/josh.v4i2.2927.

B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, pp. 13–21, 2021, doi: 10.30813/jbase.v4i1.2729.

K. Handoko, “Penerapan Data Mining Dalam Meningkatkan Mutu Pembelajaran Pada Instansi Perguruan Tinggi Menggunakan Metode K-Means Clustering (Studi Kasus Di Program Studi Tkj Akademi Komunitas Solok Selatan),” Jurnal Teknologi dan Sistem Informasi, vol. 02, no. 03, pp. 31–40, 2016.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” Jurnal Teknik Komputer AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fensi Andi Putra Hia, Dito Putro Utoma, Soeb Aripin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jurnal INFORMASI DAN TEKNOLOGI ILMIAH (INTI)
P3M STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 
Email : ejurnal.stmikbudidarma@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License