Penerapan Data Mining Untuk Pengelompokan Minat Konsumen Terhadap Pengguna Jasa Pengiriman Pada CV. Lima Benua Nusa Indonesia

 (*)Hendra Jaya Zega Mail (Universitas Budi Darma, Indonesia)
 Peber Epenetus Halawa (Universitas Budi Darma, Medan, Indonesia)
 Taronisokhi Zebua (Universitas Budi Darma, Medan, Indonesia)

(*) Corresponding Author

Abstract

Data mining is a method for finding knowledge in a fairly large pile of data by the process of digging and analyzing a very large amount of data in order to obtain something true, new and useful so that a style or pattern can be found in the data. Service in general is every activity which is intended or intended to provide satisfaction to customers, through this service customer desires and needs can be fulfilled. Service is an effort to serve other people's needs, while serving is helping to prepare (helping someone with what they need). Service is essentially the concept or practice of providing assistance or kindness to others. In general, service involves actions or efforts to help, serve, or meet the needs of others in a responsible and caring manner. As a service process that takes place routinely and continuously, covering all the lives of people in society, the process of fulfilling needs through the activities of other people, including CV. Lima Benua Nusa Indonesia is a company that offers services in the field of shipping and logistics, headquartered in Medan, Indonesia. The K-Means algorithm is an iterative clustering algorithm that partitions a data set into a number of K clusters that have been determined at the beginning

Keywords


Data Mining; K-Means Clustering Method; Service Delivery; CV. Lima Benua Nusa Indonesia

Full Text:

PDF


Article Metrics

Abstract view : 11 times
PDF - 6 times

References

R. W. Nasution, I. O. Kirana, I. Gunawan, and I. P. Sari, “Penerapan Data Mining Untuk Pengelompokan Minat Konsumen Terhadap Pengguna Jasa Pengiriman Pada PT . Jalur Nugraha Ekakurir ( JNE ) Pematangsiantar,” Resolusi, vol. 1, no. 4, pp. 274–281, 2021.

A. Karim, S. Esabella, M. Hidayatullah, and S. Suryadi, “Penerapan Data Mining Untuk Pengelompokan Terhadap Kualitas Kinerja Karyawan Dengan Menggunakan Algoritma K-Medoids Clustering,” vol. 8, no. April, pp. 1001–1009, 2024, doi: 10.30865/mib.v8i2.7445.

N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” 2024, doi: 10.58602/jima-ilkom.v3i1.26.

“Repository+PIM121”.

U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 5, no. 1, pp. 86–93, 2021, doi: 10.30865/komik.v5i1.3653.

S. Larno, M. Razi, and P. Anggraini, “Implementasi Website Promosi Dan Penjualan Pada Asosiasi Pedagang Sepatu Dan Tas Kota Padang,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 1, no. 1, pp. 38–46, 2019, doi: 10.47233/jteksis.v1i1.5.

D. Ramdhan, G. Dwilestari, R. Danar Dana, and A. Ajiz, “Clustering Data Persediaan Barang dengan Menggunakan Metode K-Means. Clustering Data Persediaan Barang dengan Menggunakan Metode K-Means,” vol. 7, no. 1, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/

I. Ferdiansyah, B. Huda, A. Hananto, and U. Buana Perjuangan Karawang, “Analisis Clustering Menggunakan Metode K-Means Pada Kemiskinan Di Jawa Timur Tahun 2020”.

S. Aulia, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja),” Djtechno: Jurnal Teknologi Informasi, vol. 1, no. 1, pp. 1–5, 2021, doi: 10.46576/djtechno.v1i1.964.

P. P. Tjaya, R. Rino, and H. Wijaya, “Implementasi Metode Clustering K-Means Untuk Rekomendasi Pengadaan Stock Lampu Pada Pt Global Lighting Indonesia,” Algor, vol. 3, no. 1, pp. 50–59, 2021, doi: 10.31253/algor.v3i1.628.

F. Irhamna Rahman, S. Mujadilah, T. Wahyuni, and L. Anas, “Prediksi Tingkat Kelulusan Menggunakan K-Means Pada Program Studi Informatika Unismuh Makassar”.

F. Handayani, “Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokkan Mahasiswa Berdasarkan Gaya Belajar,” Jurnal Teknologi dan Informasi, doi: 10.34010/jati.v12i1.

E. Febrianty, L. Awalina, and W. I. Rahayu, “Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail Optimizing Marketing Strategies with Customer Segmentation Using K-Means Clustering on Online Retail Transactions,” Jurnal Teknologi dan Informasi (JATI), vol. 13, 2023, doi: 10.34010/jati.v13i2.

D. Kurniadi et al., “1) , yoga.handoko@itg.ac.id 2) , 1806129@itg.ac.id 3) , idafarida@itg.ac,” AITI: Jurnal Teknologi Informasi, vol. 20, no. 1, pp. 64–77, 2023.

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 20–33, Mar. 2023, doi: 10.56211/helloworld.v2i1.230.

R. Mahfiroh, “Perlindungan Hukum terhadap Barang Kiriman Konsumen Pengguna Jasa Go-Send Instant Courier Melalui Tokopedia,” Jurnal Lex Renaissance, vol. 5, no. 1, pp. 235–249, 2020, doi: 10.20885/jlr.vol5.iss1.art15.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Hendra Jaya Zega, Peber Epenetus Halawa, Taronisokhi Zebua

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jurnal INFORMASI DAN TEKNOLOGI ILMIAH (INTI)
P3M STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 
Email : ejurnal.stmikbudidarma@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License