Normalisasi Data Dengan Model Min Max Untuk Klasifikasi Calon Mahasiswa Yang Layak Memperoleh KIP Kuliah Dengan Algoritma K-Nearest Neighbor
Abstract
KIP Lectures is a government program that facilitates tuition fees and frees college entrance fees. In the State of Indonesia itself the biggest factor causing the failure of children's education is the problem of poverty, inability to pay. This is what prompted the government to carry out the college KIP program so that every child of the nation can pursue education up to the tertiary level. including at the university of Budi Darma Medan. Receiving college KIP assistance must be right on target, the quota is very limited and the number of students registering, so in determining this to be more effective and efficient it should be done by applying a method that can facilitate the process in the decision to accept KIP college assistance, the method that used to overcome this problem is the K-Nearest Neighbor (KNN). The results obtained in order to facilitate the process of decision making and completion of a number of existing data, the Min-Max normalization method is also used. based on the results of the process that has been carried out with the Rapidminer application with the K-Nearest Neighbor algorithm with a test result of 50% with 2 test data.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 85 timesPDF - 39 times
References
M. M. K. Neighbor, F. Aprilia, R. Wulanningrum, M. Kom, U. Nusantara, and P. Kediri, “( STUDY KASUS : UPTD SMP NEGERI 1 BERBEK ),” vol. 01, no. 08, 2017.
S. Sumarlin and D. Anggraini, “Implementasi K-Nearest Neighbord Pada Rapidminer Untuk Prediksi Kelulusan Mahasiswa,” High Educ. Organ. Arch. Qual. J. Teknol. Inf., vol. 10, no. 1, pp. 35–41, 2018, doi: 10.52972/hoaq.vol10no1.p35-41.
C. R. Raharya, N. Hidayat, and E. Santoso, “Penentuan Penerimaan Beasiswa Menggunakan Metode Modified K-Nearest Neighbor | Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4984–4990, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3158.
M. Kholil, Kusrini, and Henderi, “Penerapan Metode K Nearest Neighbord Dalam Proses Seleksi Penerima Beasiswa,” Semin. Nas. Sist. Inf. dan Teknol. Inf. 2018, pp. 13–18, 2018.
R. L. Hasanah, M. Hasan, W. E. Pangesti, F. F. Wati, and W. Gata, “Klasifikasi Penerima Dana Bantuan Desa Menggunakan Metode Knn (K-Nearest Neighbor),” J. Techno Nusa Mandiri, vol. 16, no. 1, pp. 1–6, 2019, doi: 10.33480/techno.v16i1.25.
M. K. Efori Buulolo, DATA MINING UNTUK PERGURUAN TINGGI. CV BUDI UTAMA, 2020.
I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.
A. Rahmat Dian Nugraha, K. Auliasari, and Y. Agus Pranoto, “IMPLEMENTASI METODE K-NEAREST NEIGHBOR (KNN) UNTUK SELEKSI CALON KARYAWAN BARU (Studi Kasus : BFI Finance Surabaya),” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 14–20, 2020, doi: 10.36040/jati.v4i2.2656.
J. I. Kartika, E. Santoso, and Sutrisno, “Penentuan Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor dan Weighted Product (Studi Kasus: SMP Negeri 3 Mejayan),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 5, pp. 352–360, 2017.
Irfan Mahendra and Putri Buana, “Menentukan Source Terbaik Untuk Menemukan Pelanggan Potensial Menggunakan Algoritma K-Nearest Neighbor,” JITSI J. Ilm. Teknol. Sist. Inf., vol. 1, no. 1, pp. 1–7, 2020, doi: 10.30630/jitsi.1.1.2.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Devi Januarti Sitanggang, Efori Buulolo, Soeb Aripin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal INFORMASI DAN TEKNOLOGI ILMIAH (INTI)
P3M STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338
Email : ejurnal.stmikbudidarma@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License