DATA MINING UNTUK ANALISA TINGKAT KEJAHATAN JALANAN DENGAN ALGORITMA ASSOCIATION RULE METODE APRIORI (Studi Kasus Di Polsekta Medan Sunggal)
Abstract
Data mining, or often referred to as knowledge discovery in databases (KDD) is acollection of activities that include, the use of historical data to discoverregularities,patterns or relationships in large data. In this thesis data mining is used to analyze the level of street crime. This technique aims to provide information about the area and the potential for street crime that can assist the police in anticipation of a crime that often appears, was done by using analysis of habit how often do street crimes. Detection of crime which often occur simultaneously called association rule (association rules). Algorithm that can be used to find Apriori association rule is. Apriori algorithm is the association rule mining through multiple scan data sets, find a relationship between the variables and present a strong rule in a large database. The data is taken as a case study of street crime data Polsekta Sunggal Medan. Test data using data mining software Tanagra and Microsoft Excel for data storage. Results from a combination of patterns and rules obtained to provide information that could be followed up or contain important information that can be utilized to enhance the security and sensitivity of street crime.
References
Beta Noranita dan Nurdin Bahtiar (2010). Implementasi Data Mining Untuk Menemukan Pola Hubungan Tingkat Kelulusan Mahasiswa Denga Data Induk Mahasiswa.
Budi Santosa (2007). Data Mining, Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta. Penerbit Graha Ilmu.10.
Eko Prasetyo (2012). Data Mining Konsep Dan Aplikasi Menggunakan Matlab. Yogyakarta.Penerbit Andi.1
Eko Wahyu Tyas D (2008). Penerapan Metode Association Rules Menggunakan Algoritma Apriori Untuk Analisa Pola Data Hasil Tangkapan Ikan.
Feri Sulianto dan Dominikus Juju (2010). Data Mining, Meramalkan Bisnis Perusahaan. Jakarta. Penerbit Elex Media Komputindo.19- 22.
Kusrini dan Emha Taufig Luthfi (2009). Algoritma Data Mining. Yogyakarta. Penerbit Andi.3-12.
Leo Wilyanto Santoso (2003). Pembuatan Perangkat Lunak Data Mining Untuk Penggalian Kaidah Asosiasi Menggunakan Metode Apriori [8] Makaampoh (2013). Kedudukan Dan Tugas Polri Untuk Memberantas Aksi Premanisme Serta Kaitannya Dengan Tindak Pidana Kekerasan Dalam KUHP
Nugroho Wandi. et all (2012). Pengembangan Sistem Rekomendasi Penelusuran Buku dengan Pengendalian Association Rule Menggunakan Algoritma Apriori (Studi Kasus Badan Perpustakaan dan Kearsipan Provinsi Jawa Timur)
Padmaja dan Poongodai (2011). Mining Weighted Association Rules
Prasad dan Malik, (2011). Using Association Rule Mining for Extracting Product Sales Patterns in Retail Store Transactions.
Sani Susanto dan Dedy Suryadi (2010). Pengantar Data Mining. Yogyakarta. Penerbit Andi.97.
Subekti Mujiasih (2011). Pemanfatan Data Mining Untuk Prakiraan Cuaca
Umarani dan Punithavalli (2011). A Study On Effevtive Mining Of Association Rules From Huge Databases