Integrating Random Forest And Forward-Chaining Inference For Automated Coffee Quality Classification Using Sensory Standards

Authors

  • ika yusnita sari Departement Information Systems, State Islamic University of North Sumatera
  • Khairunnisa Khairunnisa Universitas Imelda Medan
  • Elvika Rahmi Universitas Imelda Medan
  • Siti Rafiah Rangkuti Department Of Mathematics, State Islamic University of North Sumatera, Medan, Indonesia
  • Haliza Suci Rachmadini Department Of Mathematics, State Islamic University of North Sumatera, Medan, Indonesia

DOI:

https://doi.org/10.30865/ijics.v9i3.9585

Keywords:

specialty coffee, Random Forest, Forward Chaining, machine learning, expert system, coffee quality classification

Abstract

The increasing consumption of coffee has driven the need for a fast and consistent coffee quality assessment process. The quality of specialty coffee is generally determined through cupping tests based on sensory attributes; however, this method still relies heavily on panelist subjectivity and requires considerable time and cost. This study aims to develop an automated system for specialty coffee quality classification by integrating the Random Forest algorithm and Forward Chaining inference logic. Random Forest is employed to perform initial classification and identify the importance level of sensory attributes, while Forward Chaining functions as a rule-based system to validate and explain the classification results. The study utilizes 207 coffee sensory profile data samples with 11 attributes based on the Specialty Coffee Association (SCA) cupping standards. The experimental results show that the Random Forest model achieves optimal performance with 100% accuracy, precision, recall, and F1-score, with Total Cup Points identified as the most dominant attribute. The integration of these two methods produces an accurate, consistent, and explainable coffee quality classification system in accordance with SCA standards.

References

B. M. Popkin, “Urbanization, lifestyle changes and the nutrition transition,” World Development, vol. 27, no. 11, pp. 1905–1916, Nov. 1999, doi: 10.1016/S0305-750X(99)00094-7.

P. Studi and T. Informatika, “Implementasi Algoritma Random Forest Berbasis Machine Learning untuk Prediksi Klon Kopi Unggul,” vol. 9, no. 2, pp. 230–239, 2025.

K. Ciptady, M. Harahap, and Y. Ndruru, “Prediksi Kualitas Kopi Dengan Algoritma Random Forest Melalui Pendekatan Data Science,” vol. 2, no. 1, 2022.

D. Qisthina, M. F. Kurniawan, and T. Fitrilia, “Deskripsi Atribut Sensori Tiga Jenis Kopi ( Arabika , Robusta , dan Liberika ) Asal Indonesia dan Hasil Cupping Score,” vol. 3, pp. 9031–9042, 2024.

A. Romadhon, M. Solahudin, N. Purwa, and S. Widodo, “Classification of Arabica Coffee Beans Based on Starters Type with Honey Processing Using Multi-channel Spectral Sensor,” vol. 13, no. 2, 2025, doi: 10.19028/jtep.013.2.302-317.

M. M. Mutoffar, M. Naseer, and A. Fadillah, “KLASIFIKASI KUALITAS AIR SUMUR MENGGUNAKAN,” vol. 04, no. 02, pp. 138–146, 2022.

B. Li, M. Guo, Y. Jia, T. Zeng, and X. Liu, “Design of cloud platform alert monitoring and automatic analysis system based on random forest algorithm,” vol. 29, no. April 2025, 2026.

R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” vol. 13, no. 2, pp. 67–75, 2020.

R. F. Naryanto, M. K. Delimayanti, A. Dwi, and N. Indriawan, “Development of a mobile expert system for the diagnosis on motorcycle damage using forward chaining algorithm,” vol. 27, no. 3, pp. 1601–1609, 2022, doi: 10.11591/ijeecs.v27.i3.pp1601-1609.

A. Coles, M. Fox, and A. Smith, “A New Local-Search Algorithm for Forward-Chaining Planning,” pp. 89–96, 2007.

Insan, “Sistem Pakar Pra-Diagnosa Penyakit Kulit dengan Metode Forward Chaining dan CNN dan Sains Data”.

P. Probst, M. Wright, and A.-L. Boulesteix, “Hyperparameters and Tuning Strategies for Random Forest,” arXiv:1804.03515, 2018.

J. Informasi, S. Sapriadi, A. E. Syaputra, Y. S. Eirlangga, K. H. Manurung, and N. Hayati, “Sistem Pakar Diagnosa Gaya Belajar Mahasiswa Menggunakan Metode Forward Chaining,” vol. 5, no. 3, pp. 5–10, 2023, doi: 10.60083/jidt.v5i3.381.

Downloads

Published

2025-11-30

How to Cite

sari, ika yusnita, Khairunnisa, K., Rahmi, E., Rangkuti, S. R., & Rachmadini, H. S. (2025). Integrating Random Forest And Forward-Chaining Inference For Automated Coffee Quality Classification Using Sensory Standards. The IJICS (International Journal of Informatics and Computer Science), 9(3), 203–207. https://doi.org/10.30865/ijics.v9i3.9585

Issue

Section

Articles