Implementation of K-Nearest Neighbor Algorithm for Scientific Determination of Aid Recipients at STM Agape

Authors

  • Dedi Candro Parulian Sinaga STMIK PELITA NUSANTARA
  • R. Fanry Siahaan STMIK PELITA NUSANTARA
  • Nera Mayana Br Tarigan STMIK PELITA NUSANTARA
  • Rodiah Hannum Lubis STMIK PELITA NUSANTARA
  • Dwi Novia Amallia STMIK PELITA NUSANTARA

DOI:

https://doi.org/10.30865/ijics.v9i3.9484

Keywords:

K-Nearest Neighbor (KNN) Algorithm, Aid Recipients, Underprivileged Families, STM Agape

Abstract

Providing assistance to underprivileged families is an important social effort to enhance community welfare; however, the selection of aid recipients often encounters problems such as subjectivity, unstructured data, and time inefficiency when conducted manually. This study aims to develop and evaluate a decision support system for determining aid recipients at STM Agape using the K-Nearest Neighbor (KNN) algorithm to improve accuracy and objectivity in the selection process. The research methodology employed a quantitative classification approach, where data were collected from families based on predefined criteria, including family income, number of dependents, housing conditions, and the occupation of the head of the household. The dataset was divided into training and testing data, and all attributes were normalized prior to processing. The KNN algorithm was applied using Euclidean distance to measure similarity between data instances, classifying each family into “eligible” or “ineligible” categories. The results indicate that the proposed system achieved higher classification accuracy and more consistent decision outcomes compared to manual selection methods. Additionally, the implementation of KNN reduced processing time and minimized subjective bias in determining aid recipients. These findings demonstrate that the KNN-based system is effective as a decision support tool, enabling STM Agape to distribute social assistance in a more targeted, objective, transparent, and efficient manner.

References

D. Noviana, Y. Susanti, and I. Susanto, “ANALISIS REKOMENDASI PENERIMA BEASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR (K-NN) DAN ALGORITMA C4.5,” 2019.

Dinda Amelia and Ferdy Riza, “Penerapan Algoritma K-Nearest Neighbors (K-NN) dan Naïve Bayes untuk Menentukan Pemilihan Penerima Bantuan Sosial Berdasarkan Ekonomi Masyarakat,” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 99–112, Aug. 2025, doi: 10.59581/jusiik-widyakarya.v3i3.5646.

Sumarlin, “Implementasi Algoritma K-Nearest Neighbor Sebagai Pendukung Keputusan Klasifikasi Penerima Beasiswa PPA dan BBM Sumarlin STIKOM Uyelindo Kupang,” Apr. 2015.

Kariyamin, L. O. Alyandi, and S. Arif, “Perbandingan Algoritma K-Nearest Neighbour dan C4.5 Decision Tree Untuk Klasifikasi Penerima Bantuan Program Keluarga Harapan,” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 5, no. 3, pp. 982–992, Oct. 2025, doi: 10.51454/decode.v5i3.1353.

A. Rahma Putri, A. Jamaludin, G. Informatika, U. H. Singaperbangsa Karawang Jl Ronggowaluyo, T. Timur, and J. Barat, “KLASIFIKASI PENERIMA BANTUAN LANGSUNG TUNAI DANA DESA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” 2024.

M. Hafizh Mas’ud, J. Pranoto, and R. Hasudungan, “IMPLEMENTASI METODE K-NEAREST NEIGHBOR (KNN) UNTUK MENENTUKAN PENERIMA BANTUAN PANGAN NON TUNAI (BPNT),” 2025.

Z. Aulia, L. Rosnita, J. Batam, K. Bukit Indah, B. Pulo, and M. Satu, “Application of the K-Nearest Neighbor Method to Determine Recipients of Non-Cash Food Assistance,” Jurnal Ilmu Komputer, vol. 16, no. 2.

N. S. Rosyada, H. Setiawan, and M. H. Irvani, “Klasifikasi Kelayakan Penerima Bantuan Sosial dengan Metode K-Nearest Neighbors,” INSECT, vol. 11, no. 02, pp. 190–199, 2025.

S. Sunardi, “Penerapan Algoritma K-Nearest Neighbors (KNN) pada Aplikasi Web Menggunakan Framework Django Untuk Seleksi Anggota BEM,” TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, dan Humaniora, vol. 6, no. 1, pp. 110–118, Mar. 2025, doi: 10.33650/trilogi.v6i1.10871.

E. Rahayu, N. Irawati, and R. Ananda, “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Kelayakan Warga Penerima BPNT dengan Algoritma k-Nearest Neighbor,” Jan. 2024. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

A. T. Suseno, M. Al Amin, and F. Mahardika, “Analisis Pemberian Bantuan UMKM Menggunakan Algoritma K-NN dan C4.5,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 1, pp. 248–256, Nov. 2023, doi: 10.47065/josyc.v5i1.4312.

D. Irawan, P. Riswanto, Nurmayanti, and Rustam, “Penerapan Algoritma K-Nearest Neighbor (KNN) Untuk Mengklasifikan Jenis Penerimaan Bantuan Studi Kasus Desa Madukoro Lampung Utara,” May 2023.

R. Adawiyah and E. Desi, “Metode K-Nearest Neighbor (KNN) Dalam Kelayakan The K-Nearest Neighbor (KNN) Method for Recipients of Web-Based Social Assistance,” Jurnal Rekayasa Sistem, vol. 1, no. 3, p. 1014, Sep. 2023.

Y. S. Fuansah, H. Meileni, and L. Novianti, “Implementasi Metode K-Nearest Neighbor untuk Menentukan Klasifikasi Status Ekonomi Penerima Bantuan,” Oct. 2023.

S. Yani, F. Selva Jumeilah, and M. Kadafi, “Algoritma K-Nearest Neighbor Untuk Menentukan Kelayakan,” Aug. 2020. [Online]. Available: https://journal-computing.org/index.php/journal-ita/index

Sindar, A., Sinaga, A. S., Saputri, B., & Aulia, N. (2025). Pemodelan Classification and Regression Tree (CART) Pada Klasifikasi Gaya Hidup Sehat Menggunakan Pendekatan User-Based Classification. JURNAL SISTEM INFORMASI TGD, 4(4), 1028–1036. https://ojs.trigunadharma.ac.id/index.php/jsi

Downloads

Published

2025-11-30

How to Cite

Sinaga, D. C. P., Siahaan, R. F., Tarigan, N. M. B., Lubis, R. H., & Amallia, D. N. (2025). Implementation of K-Nearest Neighbor Algorithm for Scientific Determination of Aid Recipients at STM Agape . The IJICS (International Journal of Informatics and Computer Science), 9(3), 192–198. https://doi.org/10.30865/ijics.v9i3.9484

Issue

Section

Articles