Analysis of Digital Image Forensics Authentication in Image Forgery Cases
DOI:
https://doi.org/10.30865/ijics.v9i3.9440Keywords:
Digital Forensics, Image Authentication, Error Level Analysis, Convolutional Neural Network, Method Integration.Abstract
This document introduces a combined framework for validating digital images in forensic contexts by merging Error Level Analysis (ELA) with Convolutional Neural Networks (CNN). The innovation of this research resides in the direct integration of a conventional explainable forensic method alongside a datadriven deep learning approach to ensure both clarity and enhanced detection efficacy. ELA serves to identify JPEG compression irregularities as forensic indicators, whereas CNN is employed to extract significant hierarchical features for robust image categorization. Trials were performed on the CASIA v2.0 dataset, which comprises 10,002 authentic and altered images. The suggested two-stream architecture concurrently processes original images and ELA-generated maps, facilitating synergistic feature acquisition. The hybrid model secures an accuracy rate of 74.32%, illustrating a 7.2% enhancement over isolated ELA. Furthermore, the framework diminishes the false positive rate from 50.2% to 34.8% while maintaining high sensitivity (0.84) in identifying altered regions. From a machine learning angle, this research illustrates how manually crafted forensic attributes can boost CNN capabilities when merged at the input stage. From an image processing viewpoint, it confirms ELA as a potent preprocessing strategy for directing deep feature extraction. The proposed framework provides an equilibrium between precision and forensic transparency, making it ideal for real-world digital forensic practices, including application in environments with limited resources.
References
R. Gil and J. V. J. L. Roberto, “Deepfakes : evolution and trends,” Soft Comput., vol. 27, no. 16, pp. 11295–11318, 2023, doi: 10.1007/s00500-023-08605-y.
F. Harahap, “Deteksi Foto Manipulasi Dengan Tools Forensicallybeta dan Imageforensic . org Dengan Metode Error Level Analysis ( ELA ),” vol. 2, no. 3, 2021.
M. Subli and M. M. Efendi, “PERBANDINGAN HASIL ANALISA FOTO HOAX MENGGUNAKAN METODE EXIF / METADATA ,” no. x, pp. 798–811, 2012.
W. Y. Sulistyo, S. A. Pratiwi, M. Haedar, and Z. Hidayatullah, “ANALISIS FORENSIK CITRA DI PLATFORM X MENGGUNAKAN METODE DIGITAL FORENSIC RESEARCH WORKSHOP ( DFRWS ),” vol. 8, pp. 10–20, 2025.
M. R. Al-fajri and D. Yusup, “Jurnal Sistem dan Teknologi Informasi Analisis Image Forensic Dalam Mendeteksi Rekayasa File Image Dengan Metode Nist,” vol. 6, no. 2, pp. 84–90, 2021.
M. Rizki, A. Deazwara, and R. R. Billanivo, “Forensic Analysis of AI-Generated Image Alterations Using Metadata Evaluation , ELA , and Noise Pattern Analysis,” vol. 7, no. 4, pp. 4014–4035, 2025.
M. A. Abdulhamed and A. N. Hashim, “A Survey on Detecting Deep Fakes Using Advanced AI-Based Approaches”, doi: 10.24996/ijs.2024.65.9.37.
R. N. Fauzi and N. Anwar, “Multimedia Forensic Analysis of TikTok Application Using National Institute of Justice ( NIJ ) Method,” vol. 9, no. 4, pp. 1009–1023, 2023, doi: 10.26555/jiteki.v9i4.26924.
M. Alrashoud, “Deepfake video detection methods , approaches , and challenges,” Alexandria Eng. J., vol. 125, no. January, pp. 265–277, 2025, doi: 10.1016/j.aej.2025.04.007.
R. Sistem, A. I. Putra, R. Umar, A. Fadlil, S. T. Elektro, and U. A. Dahlan, “JURNAL RESTI Penerapan Metode Localization Tampering dan Hashing untuk Deteksi,” vol. 1, no. 10, pp. 400–406, 2021.
Z. Jaya, Y. Salim, and A. Rachman, “Analisis Penerapan Metode Exif Metadata Dan Metode Error Level Analysis Untuk Pengolahan Forensic Digital,” vol. 2, no. 1, pp. 129–135, 2025.
F. Citra, D. Menggunakan, M. Error, and L. Analysis, “G-Tech : Jurnal Teknologi Terapan,” vol. 7, no. 2, pp. 586–595, 2023.
T. Sari, I. Riadi, and A. Fadlil, “Forensik Citra untuk Deteksi Rekayasa File Menggunakan Error Level Analysis,” vol. 2, no. 1, pp. 133–138, 2016.
F. Citra, D. Menggunakan, M. Error, and L. Analysis, “G-Tech : Jurnal Teknologi Terapan”.
I. G. Nengah, B. Darmawan, G. Made, A. Sasmitha, and P. W. Buana, “Pengembangan Metode Pendeteksi Modifikasi Citra Menggunakan Metode Error Level Analysis,” vol. 7, no. 1, pp. 29–36, 2019.


