Utilization of AWS Data in Landslide Risk Analysis in Manado City Using a WebGIS Approach
DOI:
https://doi.org/10.30865/ijics.v9i3.9365Keywords:
Automatic Weather Station (AWS), Landslide Risk Analysis, WebGIS; Manado City, Early Warning SystemAbstract
The City of Manado has a complex topography and hug rainfall, making it highly susceptible to landslide. This vulnerability is further exacerbated by urban development that does not always take geological and spatial planning aspects into account. The availability of an early warning system based on spatial data is therefore crucial to reduce risks and potential losses. This study aims to utilize rainfall data from the Automatic Weather Station (AWS) as the main indicator in landslide risk analysis, supported by WebGIS technology to present information in a more interctive and accesible manner. The research method consists of three main stages: daily AWS data collection, spatial analysis using overlay techniques and weighting of environmental parameters (such as rainfall, temperature, wind, and soil moisture), and the development of a WebGIS-based system to visualize risk zones. The collected data were processed to determine rainfall thresholds that have the potential to trigger landslides and were then integrated with other geospatial factors to generate more accurate risk maps. The results indicate that the integration of AWS data with spatial analysis improves the accuracy of landslide-prone area mapping in Manado. Furthermore, the implementation of WebGIS facilitates the dissemination of information to the community and local government, thereby supporting mitigation efforts and data-driven decision-making.
References
R. A. PURBA, “KAMPUS MERDEKA DALAM NEW NORMAL: RISIKO DAN KESEMPATAN,” Kampus Merdeka Seri 3 Mengen. Risiko Sist. Kampus Merdeka di Masa New Norm., p. 95.
N. Tengtrairat, W. L. Woo, P. Parathai, C. Aryupong, P. Jitsangiam, and D. Rinchumphu, “Automated landslide-risk prediction using web gis and machine learning models,” Sensors, vol. 21, no. 13, p. 4620, 2021.
M. Daud, F. M. Ugliotti, and A. Osello, “Comprehensive analysis of the use of Web-GIS for natural hazard management: A systematic review,” Sustainability, vol. 16, no. 10, p. 4238, 2024.
I. Fustos-Toribio, N. Manque-Roa, D. Vasquez Antipan, M. Hermosilla Sotomayor, and V. Letelier Gonzalez, “Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes,” Nat. Hazards Earth Syst. Sci., vol. 22, no. 6, pp. 2169–2183, 2022.
S. Pandey, N. Kumari, and L. Mallick, “Review on assessment of land degradation in watershed using geospatial technique based on unmanned aircraft systems,” Unmanned Aircr. Syst., pp. 263–311, 2024.
C. N. Abadie et al., “Fibre Optic Sensing and Satellite Imaging for Early Warning of Catastrophic Ground Subsidence,” 2024.
R. Satyaningsih, V. Jetten, J. Ettema, A. Sopaheluwakan, L. Lombardo, and D. E. Nuryanto, “Dynamic rainfall thresholds for landslide early warning in Progo Catchment, Java, Indonesia,” Nat. Hazards, vol. 119, no. 3, pp. 2133–2158, 2023.
P. V Gorsevski, “A free web-based approach for rainfall-induced landslide susceptibility modeling: Case study of Clearwater National Forest, Idaho, USA,” Environ. Model. Softw., vol. 161, p. 105632, 2023.
R. J. Marin, J. C. Marín-Sánchez, J. E. Mira, E. F. García, B. Zhao, and J. Zambrano, “Landslide Hazard and Rainfall Threshold Assessment: Incorporating Shallow and Deep-Seated Failure Mechanisms with Physics-Based Models,” Geosciences, vol. 14, no. 10, p. 280, 2024.
R. A. Purba, “Application design to help predict market demand using the waterfall method,” Matrix J. Manaj. Teknol. dan Inform., vol. 11, no. 3, pp. 140–149, 2021.
S. Khan, D. B. Kirschbaum, T. A. Stanley, P. M. Amatya, and R. A. Emberson, “Global landslide forecasting system for hazard assessment and situational awareness,” Front. Earth Sci., vol. 10, p. 878996, 2022.
M.-W. Gui, H.-A. Chu, M.-C. Chung, and L.-S. Chih, “Integrating Rainfall Distribution Patterns and Slope Stability Analysis in Determining Rainfall Thresholds for Landslide Occurrences: A Case Study,” Water, vol. 17, no. 8, p. 1240, 2025.
P. Li et al., “Establishing radar-derived rainfall thresholds for a landslide early warning system: a case study in the Sichuan Basin, Southwest China,” Sci. Rep., vol. 15, no. 1, p. 26308, 2025.
W. Y. Lee, S. K. Park, and H. H. Sung, “The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea,” Landslides, vol. 18, no. 5, pp. 1721–1739, 2021.
L. Piciullo, M. Calvello, and J. M. Cepeda, “Territorial early warning systems for rainfall-induced landslides,” Earth-Science Rev., vol. 179, pp. 228–247, 2018.
Z. Sokol, J. Szturc, J. Orellana-Alvear, J. Popova, A. Jurczyk, and R. Célleri, “The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling—A review,” Remote Sens., vol. 13, no. 3, p. 351, 2021.
A. Selan, D. Y. Ariswati, and J. Saekoko, “Analisis Literatur: Efektivitas Sistem Informasi Geografis Untuk Pemetaan Daerah Rawan Bencana,” J. Cakrawala Inf., vol. 5, no. 1, pp. 1–12, 2025.
P. O. Andewi, K. A. Seputra, K. Y. E. Aryanto, and L. J. E. Dewi, “INTEGRASI TEKNOLOGI PENGINDERAAN JAUH DAN MACHINE LEARNING PADA WEB GIS UNTUK PEMETAAN POTENSI BANJIR,” J. Pendidik. Teknol. dan Kejuru., vol. 22, no. 1, pp. 12–23, 2025.
R. A. Purba, J. Simarmata, T. Limbong, and R. Damanik, “Mixed Learning Models and IoT Devices: Effectively Increasing Competence and Training Independent Learning Students in Unnormal Situations,” JOIV Int. J. Informatics Vis., vol. 8, no. 4, pp. 2502–2510, 2024.
P. Perkasa, H. Nibel, R. Ovany, and E. I. Purnawan, “Penguatan Kapasitas Masyarakat dengan Avenza Maps: Tantangan dan Strategi Pembangunan Lokal yang Berkelanjutan: Pengabdian,” J. Pengabdi. Masy. dan Ris. Pendidik., vol. 3, no. 4, pp. 1385–1390, 2025.
A. Asro, J. Chaidir, C. Chairuddin, and A. Purwanto, “Integrasi GIS dan Remote Sensing untuk Sistem Pemetaan Rute Interaktif di Perkotaan,” Zo. Tek. J. Ilm., vol. 19, no. 1, 2025.
L. T. Rohmah, F. Ferdiansyah, and M. R. Yanuar, “Analisis Kerentanan Banjir di Kota Tangerang Menggunakan Data Geospasial Terbuka: Integrasi Topografi Visual, Jaringan Sungai, dan Penggunaan Lahan untuk Mendukung Pengambilan Keputusan Tata Ruang,” SAINSTECH J. Penelit. DAN Pengkaj. SAINS DAN Teknol., vol. 35, no. 2, pp. 58–68, 2025.
S. A. Rahmawati, “SISTEM EARLY WARNING BERBASIS ELEKTRONIKA UNTUK MITIGASI BENCANA ALAM,” J. Ilmu Sains dan Teknol., vol. 1, no. 2, pp. 90–97, 2025.
R. A. Purba, D. J. M. Sembiring, S. M. B. Perangin-Angin, and R. Buaton, “Implementasi Metode Promethee Untuk Rekomendasi Destinasi Objek Wisata Unggulan Provinsi Sumatera Utara,” JST (Jurnal Sains dan Teknol., vol. 13, no. 1, pp. 181–189, 2024.
R. A. Purba and S. Sondang, “Design and Build Monitoring System for Pregnant Mothers and Newborns using the Waterfall Model,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 6, no. 1, pp. 29–42, 2022.
B. Zamili, “Rancang Bangun Alat Ukur Data Iklim Automatic Weather Station (AWS),” Agric. Eng. Innov. J., vol. 2, no. 1, pp. 28–36, 2024.
R. A. Purba, “Combination Learning Models With Technology To Hone Critical Minding Patterns On National Insights,” J. Pendidik. dan Pengajaran, vol. 55, no. 1, 2022.
A. P. Pramagusta, M. Putra, B. Santoso, and M. S. Ridho, “Rancang Bangun Sistem Sensor True Wind untuk Automatic Weather Station di Kapal,” in Prosiding Seminar Nasional Teknik Elektro UIN Sunan Gunung Djati Bandung, 2020, pp. 121–134.
R. A. Purba, R. G. Munthe, and K. Ginting, “Learning Model with LMS as an Innovation to Facilitate the Implementation of Learning from Home,” JPI (Jurnal Pendidik. Indones., vol. 11, no. 2, pp. 293–301, 2022.


