Implementation of Deep Learning Method Using BERT Model in Career Choice Analysis of Gen Z
DOI:
https://doi.org/10.30865/ijics.v9i2.8917Keywords:
Generation Z, career choice, BERT, sentiment analysis, deep learningAbstract
The development of digital technology has significantly influenced how individuals, particularly Generation Z (born between 1997 and 2012), make career decisions. Faced with an abundance of digital information, many individuals in this cohort experience difficulties in selecting career paths that align with their interests, abilities, and labor market demands. This study analyzes the career preferences of Generation Z using a deep learning approach through the Bidirectional Encoder Representations from Transformers (BERT) model, specifically the IndoBERT variant, which is pre-trained on Indonesian-language data. The research data were collected from textual responses to Google Form questionnaires, focusing on four digital career paths: Software Engineer, Content Creator, Digital Marketing, and Entrepreneur. From 601 data samples, sentiment analysis revealed that 57.85% of the responses were positive, while 42.15% were negative. Classification results indicated that Content Creator was the most preferred career, followed by Entrepreneur, Digital Marketer, and Software Engineer. Model evaluation showed a test accuracy of 51.24%, with better performance in categories that had larger data volumes. These findings demonstrate that IndoBERT is effective in capturing opinions and career tendencies from unstructured text and provides a scientific basis for educational institutions, industries, and policymakers to design more relevant career development strategies in the digital era.
References
S. D. Saraswati, N. Alifia, and G. B. Setyawan, “YUME : Journal of Management Pengaruh Persepsi Generasi Z Terhadap Pilihan Karir Pada Mahasiswa Universitas Karya Husada,” vol. 8, no. 2, pp. 1691–1699, 2025.
M. Alimuddin and P. Poddala, “Prospek Digital Marketing Untuk Generasi Muda Dalam Berwirausaha,” J. Career Dev., vol. 1, no. 1, pp. 54–70, 2023.
Eka Nurkhasannah and Shafa Anggita Putri, “Pengaruh Persepsi Generasi Z Terhadap Pilihan Karir pada Mahasiswa Program Studi Manajemen Universitas Pamulang,” J. Manag. Creat. Bus., vol. 3, no. 1, pp. 251–260, 2025, doi: 10.30640/jmcbus.v3i1.3703.
D. Mawabagja, A. Kurniawan, R. Claudia, S. Islami, and R. Fadjri, “Strategi Adaptasi Manajemen Puncak dalam Menghadapi Transformasi Tenaga Kerja Generasi Z Pendahuluan Transformasi tenaga kerja yang terjadi saat ini dipengaruhi oleh masuknya generasi Z,” vol. 03, no. 03, pp. 132–142, 2025.
Z. W. Farida and N. Rochmawati, “Analisis Sentimen Masyarakat terhadap Fenomena Childfree Menggunakan Metode Long Short Term Memory dan Bidirectional Encoder Representations from Transformers di Twitter,” J. Informatics Comput. Sci., vol. 5, no. 03, pp. 369–376, 2024, doi: 10.26740/jinacs.v5n03.p369-376.
R. M. R. W. P. K. Atmaja and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),” Jeisbi, vol. 02, no. 03, p. 2021, 2021.
S. Prasetyo and T. Dewayanto, “Penerapan Machine Learning, Deep Learning, Dan Data Mining Dalam Deteksi Kecurangan Laporan Keuangan-a Systematic Literature Review,” Diponegoro J. Account., vol. 13, no. 3, pp. 1–12, 2024, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/accounting
R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.
I. C. Azhari and T. Haryanto, “Modeling Of Hyperparameter Tuned RNN-LSTM and Deep Learning For Garlic Price Forecasting In Indonesia,” J. Informatics Telecommun. Eng., vol. 7, no. 2, pp. 502–513, 2024, doi: 10.31289/jite.v7i2.10714.
P. Hafidzah, S. Maryani, B. Y. Ihsani, E. Erwin, and A. K. Niswariyana, “Penerapan Deep Learning dalam Menganalisis Sentimen di Media Sosial,” Semin. Nas. Paedagoria, vol. 4, pp. 328–339, 2024.
Vidya Chandradev, I Made Agus Dwi Suarjaya, and I Putu Agung Bayupati, “Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT,” J. Buana Inform., vol. 14, no. 02, pp. 107–116, 2023, doi: 10.24002/jbi.v14i02.7244.
M. Furqan, S. Sriani, and M. N. Shidqi, “Chatbot Telegram Menggunakan Natural Language Processing,” Walisongo J. Inf. Technol., vol. 5, no. 1, pp. 15–26, 2023, doi: 10.21580/wjit.2023.5.1.14793.
W. Alan, “Klasifikasi Emosi pada Teks Menggunakan Deep Learning,” Tugas Akhir di Univ. Islam Indones., vol. 6, no. 1, 2021.
A. Ripa’i, F. Santoso, and F. Lazim, “Deteksi Berita Hoax dengan Perbandingan Website Menggunakan Pendekatan Deep Learning Algoritma BERT,” G-Tech J. Teknol. Terap., vol. 8, no. 3, pp. 1749–1758, 2024, doi: 10.33379/gtech.v8i3.4541.
Y. A. Singgalen, “IndoBERT-Based Sentiment Analysis for Understanding Hotel Guests ’ IndoBERT-Based Sentiment Analysis for Understanding Hotel Guests ’ Preferences,” no. March, 2025, doi: 10.47065/josyc.v6i2.6864.
E. Mundika, G. H. Martono, and R. Rismayati, “Sentiment Analysis of Service and Facility Satisfaction at Computer Lab of Universitas Bumigora Using Indobert,” vol. 5, no. 2, pp. 475–484, 2025, doi: 10.30811/jaise.v5i2.6798.
G. T. Fadilah, L. Muflikhah, and R. S. Perdana, “Analisis Sentimen Produk Hijab Pada E-Commerce Tokopedia Menggunakan Algoritma Support Vector Machine Dan Indobert Embedding,” vol. 9, no. 2, pp. 2548–964, 2025, [Online]. Available: http://j-ptiik.ub.ac.id
A. S. Rizky and E. Y. Hidayat, “Emotion Classification in Indonesian Text Using IndoBERT,” Comput. Eng. Appl., vol. 14, no. 1, pp. 2252–4274, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Silvia Ramadhani,Abdul Halim Hasugian

This work is licensed under a Creative Commons Attribution 4.0 International License.


