Debtors Prospective Assessment Application using Naive Bayes at Mitra Sejahtera Cooperative

Indra Griha Tofik Isa, Beni Junedi

Abstract


Utilization of historical data into new knowledge can increase added value for its users, including Mitra Setia Cooperative (KMS) which has debtor data that is not utilized. “Not Paid Off†potentioal of debtors cannot be detected as early as possible. In this study using the Naive Bayes algorithm in classifying the feasibility of prospective debtors based on the classification of "Paid Off" and "Not Paid Off" based on parameter of Age, Sex, Amount of Loan, Occupation, Income, and Repayment Period. The research stages consist of (1) Research Initiation, (2) Data Selection, (3) Data Preprocessing, (4) System Design, (5) Program Implementation and (6) Program Testing. The purpose of this study is to minimize the increase in bad loans by implementing the Naive Bayes method in the application of the assessment of prospective debtors. The final result is a debtors prospective assessment application at Mitra Sejahtera Cooperative with an accuracy rate of 86%

Keywords


Debtor Prospective Assessment; Naive Bayes; Mitra Setia Cooperatives (KMS); Classification

Full Text:

PDF

References


Mahasiswa-Ekonomi-Syariah, EKONOMI KOPERASI. Pasuruan: Fakultas Agama Islam - Universitas Yudharta Pasuruan, 2018.

Kementerian-Koperasi-dan-Usaha-Kecil-dan-Mikro, “Laporan Data Koperasi Per 31 Desember 2019,†Jakarta, 2019.

S. H. Permana, “Strategi Peningkatan Usaha Mikro, Kecil, Dan Menengah (Umkm) Di Indonesia,†Aspirasi, vol. 8, no. 1, pp. 93–103, 2017.

S. Suthaharan, Machine Learning Models and Algorithms for Big Data Classification. North Carolina: Springer, 2016.

I. G. T. Isa, “Kansei Engineering Approach in Software Interface Design,†J. Sci. Innovare, vol. 1, no. 01, pp. 22–26, 2018, doi: 10.33751/jsi.v1i01.680.

M. K. Sari, E. Ernawati, and I. Wisnubhadra, “Pembangunan Aplikasi Klasifikasi Mahasiswa Baru untuk Prediksi Hasil Studi Menggunakan Naïve Bayes Classifier,†J. Buana Inform., vol. 7, no. 2, pp. 135–142, 2016, doi: 10.24002/jbi.v7i2.492.

C. C. Aggarwal, “An Introduction to Data Classification,†in Data Classification: Algorithms and Applications, C. C. Aggarwal, Ed. New York, USA: CRC Press, 2014, pp. 1–31.

R. B. Hadiprakoso and I. K. S. Buana, “Performance Comparison of Feature Extraction and Machine Learning Classification Algorithms for Face Recognition,†IJICS (International J. Informatics Comput. Sci., vol. 5, no. 3, pp. 250–257, 2021, doi: 10.30865/ijics.v5i3.3333.

D. A. A. AlHammadi and M. S. Aksoy, “Data Mining in Higher Education,†Period. Eng. Nat. Sci., vol. 1, no. 2, pp. 1–4, 2013, doi: 10.21533/pen.v1i2.17.

Bustami, “Penerapan Algoritma Naive Bayes untuk Mengklasifikasi Data Nasabah Asuransi,†J. Inform., vol. 8, no. 1, pp. 884–898, 2014.

F. Marisa, “Educational Data Mining (Konsep dan Penerapan),†J. Teknol. Inf., vol. 4, no. 2, pp. 91–93, 2013.

I. Listiowarni, “Implementasi Naïve Bayessian dengan Laplacian Smoothing untuk Peminatan dan Lintas Minat Siswa SMAN 5 Pamekasan,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 8, no. 2, p. 124, 2019, doi: 10.32736/sisfokom.v8i2.652.

D. A. Kurniawan and Y. I. Kurniawan, “Aplikasi Prediksi Kelayakan Calon Anggota Kredit Menggunakan Algoritma Naïve Bayes,†J. Teknol. dan Manaj. Inform., vol. 4, no. 1, 2018, doi: 10.26905/jtmi.v4i1.1831.

A. P. Fadillah and B. Hardiyana, “Penerapan Naïve Bayes Classifier Untuk Pemilihan Konsentrasi Mata Kuliah,†J. Teknol. dan Inf., vol. 8, no. 2, 2018, doi: 10.34010/jati.v8i2.1039.




DOI: https://doi.org/10.30865/ijics.v6i2.3990

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Indra Griha Tofik Isa, Beni Junedi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


The IJICS (International Journal of Informatics and Computer Science)
Published by Universitas Budi Darma.
Jl. Sisingamangaraja No.338 Simpang Limun, Medan, North Sumatera
Email: ijics.stmikbudidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.