Implementation of The Fuzzy Tsukamoto Method In Predicting Corn Harvest Results in The Office Agriculture of North Sumatra Province

 (*)Muhammad Azri Mail (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
 Jaya Tata Hardinata (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
 Yuegilion Pranayama Purba (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)

(*) Corresponding Author

Submitted: March 12, 2022; Published: March 31, 2022

Abstract

Corn is a food crop that produces carbohydrates. The increasing need for food is in line with the population growth. The need for corn is an aspect that must be met by the Indonesian government in an effort to prosper the community. in order to determine the quality of corn harvests that are good and in accordance with the desired target. Corn productivity at the North Sumatra Provincial Agriculture Office changes every year. This requires predictions to know the future image for the harvest whether it will increase or decrease. Based on the situation in Simalungun district, a system that can predict corn harvest is needed to assist farmers in predicting how much they will harvest. Results of predicting corn harvest. in North Sumatra Province in 2019 the largest was 767304.6 (tons) and the smallest yield was 51 (tons) and the largest land area was 111386(ha) and the smallest was 554(ha). While the largest harvested area in 2019 was 108898 (ha) and the smallest was 9 (ha). For 2020, the harvested area is 106682 (ha) and the land area is 28412.5 (ha), so the prediction results in 2020 are 205148.16 (tons)

Keywords


Fuzzy Tzukamoto; Predicting; Corn Harvest; Agricultural Service

Full Text:

PDF


Article Metrics

Abstract view : 454 times
PDF - 252 times

References

Y. Laia and A. Halim, “Tsukamoto Fuzzy Method Analysis in Laptop Damage Diagnosis,” vol. 4, no. 1, pp. 54–61, 2022.

I. Asidik, Kusrini, and Henderi, “Decision Support System Model of Teacher Recruitment Using Algorithm C4.5 and Fuzzy Tahani,” J. Phys. Conf. Ser., vol. 1140, no. 1, 2018, doi: 10.1088/1742-6596/1140/1/012030.

T. Informatika, U. Muhammadiyah, and F. Lutfi, “Sistem Pendukung Keputusan Prediksi Jumlah Produksi Jamur Tiram Putih Menggunakan Metode Fuzzy Tsukamoto,” vol. 11, no. 3, pp. 126–132, 2013.

A. Sianturi, “Sistem Pakar Diagnosa Kerusakan Mesin Jahit Janome Menggunakan Metode Variable Centered Intelligent Rule System ( VCIRS ) dan Naïve Bayes,” vol. 1, no. 3, pp. 201–208, 2021.

O. Zemlianskiy, I. Maladyka, O. Miroshnik, I. Shkarabura, and G. Kaplenko, “Forecasting the emergency explosive environment with the use of fuzzy,” Eastern-European J. Enterp. Technol., vol. 6, no. 4–90, pp. 19–27, 2017, doi: 10.15587/1729-4061.2017.116839.

R. Taufiq et al., “Honorer Menjadi Calon Pegawai Negeri Sipil Dengan Metode Analytical Hierarchy Process ( Study Kasus : Badan Kepegawaian Dan Pengembangan Sumber Daya Manusia Kota Tangerang ),” no. 2013, pp. 515–521, 2018.

P. Alkhairi, I. S. Damanik, and A. P. Windarto, “Penerapan Jaringan Saraf Tiruan untuk Mengukur Korelasi Beban Kerja Dosen Terhadap Peningkatan Jumlah Publikasi,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 581, 2019, doi: 10.30645/senaris.v1i0.65.

S. W. Nurul Azizah, “Sistem Pendukung Keputusan Seleksi Calon Karyawan Dengan Metode Promethee Studi Kasus Pamella Group Yogyakarta,” vol. 2, pp. 1061–1075, 2014.

A. Ikhtiyath, “Sistem Pendukung Keputusan Penerimaan Karyawan Menggunakan Metode Promethee (Studi Kasus: Cv. Elfa’s Kudus),” 2018.

I. AFIFAH, “Sistem Pendukung Keputusan Rekomendasi Kenaikan Jabatan Dosen Uin Maulana Malik Ibrahim Malang Dengan Metode Fuzzy Ahp,” 2018.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhammad Azri, Jaya Tata Hardinata, Yuegilion Pranayama Purba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


The IJICS (International Journal of Informatics and Computer Science)
Published by STMIK Budi Darma.
Jl. Sisingamangaraja No.338 Simpang Limun, Medan, North Sumatera
Email: ijics.stmikbudidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.