Optimizing Attack Detection for High Dimensionality and Imbalanced Data with SMOTE, Chi-Square and Random Forest Classifier
Abstract
Keywords
Full Text:
PDFReferences
L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data: Opportunities and challenges,†Neurocomputing, vol. 237, pp. 350–361, 2017, doi: 10.1016/j.neucom.2017.01.026.
S. Maldonado and J. López, “Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification,†Applied Soft Computing Journal, vol. 67, pp. 94–105, 2018, doi: 10.1016/j.asoc.2018.02.051.
M. W. Mwadulo, “A Review on Feature Selection Methods For Classification Tasks,†vol. 5, no. 6, pp. 395–402, 2016.
Sheena, K. Kumar, and G. Kumar, “Analysis of Feature Selection Techniques: A Data Mining Approach,†International Conference on Engineering & Technology, vol. 4, no. Icaet, pp. 17–21, 2016, [Online]. Available: https://pdfs.semanticscholar.org/e6cf/aaea75a76aff400b8edc13ea402f445cd5ad.pdf
T. A. Alhaj, M. M. Siraj, A. Zainal, H. T. Elshoush, and F. Elhaj, “Feature selection using information gain for improved structural-based alert correlation,†PLoS ONE, vol. 11, no. 11, pp. 1–18, 2016, doi: 10.1371/journal.pone.0166017.
O. Isaiah, A. Olutola, and O. Olayemi, “Feature or Attribute Extraction for Intrusion Detection System using Gain Ratio and Principal Component Analysis (PCA),†Communications on Applied Electronics, vol. 4, no. 3, pp. 1–4, 2016, doi: 10.5120/cae2016652032.
S. Bahl and D. Dahiya, “Enhanced Intrusion Detection System for Detecting Rare Class Attacks using Correlation based Dimensionality Reduction Technique,†vol. 9, no. March, 2016, doi: 10.17485/ijst/2016/v9i11/84277.
V. Vijayakumar and V. Neelanarayanan, “Intrusion Detection Model Using Chi Square Feature Selection and Modified Naïve Bayes Classifier,†Smart Innovation, Systems and Technologies, vol. 49. Springer International Publishing Switzerland, pp. v–vii, 2016. doi: 10.1007/978-3-319-30348-2.
I. S. Thaseen, C. A. Kumar, and A. Ahmad, “Integrated Intrusion Detection Model Using Chi-Square Feature Selection and Ensemble of Classifiers,†Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3357–3368, 2019, doi: 10.1007/s13369-018-3507-5.
S. Rodda and U. S. R. Erothi, “Class imbalance problem in the Network Intrusion Detection Systems,†International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, pp. 2685–2688, 2016, doi: 10.1109/ICEEOT.2016.7755181.
Q. Wang, Z. Luo, J. Huang, Y. Feng, and Z. Liu, “A Novel Ensemble Method for Imbalanced Data Learning,†Computational Intelligence and Neuroscience, vol. 2017, pp. 1–11, 2017.
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,†Expert Systems with Applications, vol. 73, pp. 220–239, 2017, doi: 10.1016/j.eswa.2016.12.035.
M. Reza, S. Miri, and R. Javidan, “A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset,†International Journal of Advanced Computer Science and Applications, vol. 7, no. 6, pp. 20–25, 2016, doi: 10.14569/ijacsa.2016.070603.
B. Yan, G. Han, M. Sun, and S. Ye, “A novel region adaptive SMOTE algorithm for intrusion detection on imbalanced problem,†2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017, vol. 2018-Janua, pp. 1281–1286, 2018, doi: 10.1109/CompComm.2017.8322749.
B. Yan and G. Han, “LA-GRU: Building Combined Intrusion Detection Model Based on Imbalanced Learning and Gated Recurrent Unit Neural Network,†Security and Communication Networks, vol. 2018, 2018, doi: 10.1155/2018/6026878.
P. Bedi, N. Gupta, and V. Jindal, “I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems,†Applied Intelligence, 2020, doi: 10.1007/s10489-020-01886-y.
I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization,†ICISSP 2018 - Proceedings of the 4th International Conference on Information Systems Security and Privacy, vol. 2018-Janua, no. Cic, pp. 108–116, 2018, doi: 10.5220/0006639801080116.
R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems,†International Journal of Engineering and Technology(UAE), vol. 7, no. 3.24 Special Issue 24, pp. 479–482, 2018.
A. Buczak and E. Guven, “A survey of data mining and machine learning methods for cyber security intrusion detection,†IEEE Communications Surveys & Tutorials, vol. PP, no. 99, p. 1, 2015, doi: 10.1109/COMST.2015.2494502.
K. Goeschel, “Reducing false positives in intrusion detection systems using data-mining techniques utilizing support vector machines, decision trees, and naive Bayes for off-line analysis,†Conference Proceedings - IEEE SOUTHEASTCON, vol. 2016-July, 2016, doi: 10.1109/SECON.2016.7506774.
B. Dhruba K and K. Jugal K, Network Anomaly Detection A Machine Learning Perspective. 2014.
M. Reazul, A. Rahman, and T. Samad, “A Network Intrusion Detection Framework based on Bayesian Network using Wrapper Approach,†International Journal of Computer Applications, vol. 166, no. 4, pp. 13–17, 2017, doi: 10.5120/ijca2017913992.
T. Ait Tchakoucht and M. Ezziyyani, “Building a fast intrusion detection system for high-speed-networks: Probe and dos attacks detection,†Procedia Computer Science, vol. 127, pp. 521–530, 2018, doi: 10.1016/j.procs.2018.01.151.
S. Aljawarneh, M. B. Yassein, and M. Aljundi, “An enhanced J48 classification algorithm for the anomaly intrusion detection systems,†Cluster Computing, pp. 1–17, 2017, doi: 10.1007/s10586-017-1109-8.
A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Network anomaly detection by cascading k-Means clustering and C4.5 decision tree algorithm,†Procedia Engineering, vol. 30, no. 2011, pp. 174–182, 2012, doi: 10.1016/j.proeng.2012.01.849.
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems). 2011.
M. C. Belavagi and B. Muniyal, “Performance Evaluation of Supervised Machine Learning Algorithms for Intrusion Detection,†Procedia Computer Science, vol. 89, pp. 117–123, 2016, doi: 10.1016/j.procs.2016.06.016.
J. Jiang, Q. Wang, Z. Shi, B. Lv, and B. Qi, “RST-RF: A hybrid model based on rough set theory and random forest for network intrusion detection,†ACM International Conference Proceeding Series, pp. 77–81, 2018, doi: 10.1145/3199478.3199489.
J. Novaković, P. Strbac, and D. Bulatović, “Toward optimal feature selection using ranking methods and classification algorithms,†Yugoslav Journal of Operations Research, vol. 21, no. 1, pp. 119–135, 2011, doi: 10.2298/YJOR1101119N.
M. A. Salama, H. F. Eid, R. A. Ramadan, A. Darwish, and A. E. Hassanien, “Hybrid Intelligent Intrusion Detection Scheme,†Soft computing in industrial applications, pp. 293–303, 2011.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,†Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002, doi: 10.1613/jair.953.
Y. T. Y. Wei Chang Yeh and C. M. Lai, “A Hybrid Simplified Swarm Optimization Method for Imbalanced Data Feature Selection,†Australian Academy of Business and Economics Review, vol. 2, no. 3, pp. 19–21, 2016.
T. Garg and S. S. Khurana, “Comparison of classification techniques for intrusion detection dataset using WEKA,†International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2014, 2014, doi: 10.1109/ICRAIE.2014.6909184.
R. Goel, A. Sardana, and R. C. Joshi, “Parallel Misuse and Anomaly Detection Model,†vol. 14, no. 4, pp. 211–222, 2012.
D. Summeet and D. Xian, Data Mining and Machine Learning in Cybersecurity. CRC Press, 2011.
A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke, “A Novel Hierarchical Intrusion Detection System based on Decision Tree and Rules-based Models,†2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE, pp. 228–233, 2019.
R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid, “Features dimensionality reduction approaches for machine learning based network intrusion detection,†Electronics (Switzerland). MPDI, vol. 8, no. 3, p. 322, 2019, doi: 10.3390/electronics8030322.
S. Ustebay, Z. Turgut, and M. A. Aydin, “Intrusion Detection System with Recursive Feature Elimination by Using Random Forest and Deep Learning Classifier,†International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, IBIGDELFT 2018 - Proceedings, pp. 71–76, 2019, doi: 10.1109/IBIGDELFT.2018.8625318.
DOI: https://doi.org/10.30865/ijics.v6i1.3890
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Kurniabudi, Abdul Harris, Veronica, Elvi Yanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
The IJICS (International Journal of Informatics and Computer Science)
Published by Universitas Budi Darma.
Jl. Sisingamangaraja No.338 Simpang Limun, Medan, North Sumatera
Email: ijics.stmikbudidarma@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.