Performance Comparison of Feature Extraction and Machine Learning Classification Algorithms for Face Recognition
DOI:
https://doi.org/10.30865/ijics.v5i3.3333Keywords:
PCA, LDA, Machine learning, Face recognition, Feature ExtractionAbstract
Face recognition is a highly active research topic in pattern recognition and computer vision, with numerous practical applications. Face recognition can provide the most natural interaction experience similar to the way humans can recognize others. This paper presents a performance comparison of various machine learning approaches and feature extraction algorithms. The feature extraction algorithm used is Principal Component Analysis (PCA), Latent Dirichlet Allocation (LDA), and a combination of PCA-LDA. The method used is to take a dataset sample and then evaluate and compare machine learning algorithms to analyze accuracy in recognizing faces. We also use feature extraction techniques on facial image capture to speed up data processing. The classification algorithms measured are k-nearest neighbor, naive Bayes, support vector machine, random forest, and gradient boosting. The results showed that the random forest classification algorithm was the most accurate face recognition method. On the other hand, the PCA-LDA combined feature extraction algorithm has lower false-negative and false-positive rates than PCA and LDA. In addition, the PCA feature extraction algorithm has the fastest performance in the process of recognizing facesReferences
A. L. Machidon, O. M. Machidon, dan P. L. Ogrutan, “Face Recognition Using Eigenfaces, Geometrical PCA Approximation and Neural Networks,†in 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Jul 2019, hal. 80–83, doi: 10.1109/TSP.2019.8768864.
F. Jalled, “Face Recognition Machine Vision System Using Eigenfaces,†arxiv.org, Mei 2017.
G. I. Hapsari, G. A. Mutiara, dan H. Tarigan, “Face recognition smart cane using haar-like features and eigenfaces,†TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 2, hal. 973, Apr 2019, doi: 10.12928/telkomnika.v17i2.11772.
G. M. Zafaruddin dan H. S. Fadewar, “Face Recognition Using Eigenfaces,†in Advances in Intelligent Systems and Computing, vol. 810, Springer Verlag, 2019, hal. 855–864.
M. Anggo dan La Arapu, “Face Recognition Using Fisherface Method,†J. Phys. Conf. Ser., vol. 1028, no. 1, hal. 012119, Jun 2018, doi: 10.1088/1742-6596/1028/1/012119.
N. V. Megha Chandra Reddy dan K. Kumar, “Comparison of HOG and Fisherfaces Based Face Recognition System Using MATLAB,†in 2021 2nd International Conference for Emerging Technology (INCET), Mei 2021, hal. 1–5, doi: 10.1109/INCET51464.2021.9456366.
I. Gangopadhyay, A. Chatterjee, dan I. Das, “Face Detection and Expression Recognition Using Haar Cascade Classifier and Fisherface Algorithm,†in Advances in Intelligent Systems and Computing, vol. 922, Springer Verlag, 2019, hal. 1–11.
J.-K. Park, H.-H. Park, dan J. Park, “Distributed eigenfaces for massive face image data,†Multimed. Tools Appl., vol. 76, no. 24, hal. 25983–26000, Des 2017, doi: 10.1007/s11042-017-4823-6.
B. Priambodo, Y. Jumaryadi, dan Z. P. Putra, “Comparison of Local Binary Pattern and Eigenfaces for Predict Suspect Positive Drugs,†in 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), Sep 2020, hal. 64–67, doi: 10.1109/BCWSP50066.2020.9249405.
J. E. Higham, A. Vaidheeswaran, K. Benavides, dan P. Shepley, “Eigenparticles: characterizing particles using eigenfaces,†Granul. Matter, vol. 21, no. 3, hal. 45, Agu 2019, doi: 10.1007/s10035-019-0900-z.
R. Rian Chrisna Putra dan F. Panca Juniawan, “Penerapan Algoritma Fisherfaces Untuk Pengenalan Wajah Pada Sistem Kehadiran Mahasiswa Berbasis Android,†Digit. Welt, vol. 2, no. 2, hal. 54–54, 2018.
H. Hanselmann, S. Yan, dan H. Ney, “Deep fisher faces,†2017, doi: 10.5244/C.31.165.
J.-K. Park, H.-H. Park, dan J. Park, “Distributed eigenfaces for massive face image data,†Multimed. Tools Appl., vol. 76, no. 24, hal. 25983–26000, Des 2017, doi: 10.1007/s11042-017-4823-6.
S. K. Salah, W. R. Humood, dan A. O. Khalaf, “A Proposed Generalized Eigenfaces System for Face Recognition Based on One Training Image,†J. Southwest Jiaotong Univ., vol. 55, no. 2, 2020, doi: 10.35741/issn.0258-2724.55.2.33.
B. W. Yohanes, R. Diaz Airlangga, dan I. Setyawan, “Real Time Face Recognition Comparison Using Fisherfaces and Local Binary Pattern,†in 2018 4th International Conference on Science and Technology (ICST), Agu 2018, hal. 1–5, doi: 10.1109/ICSTC.2018.8528608.
I. Gangopadhyay, A. Chatterjee, dan I. Das, “Face Detection and Expression Recognition Using Haar Cascade Classifier and Fisherface Algorithm,†in Advances in Intelligent Systems and Computing, vol. 922, 2019, hal. 1–11.


