The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59
ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index
DOI 10.30865/ijics.v9i2 .8921

Comparison of Elias Delta and Interpolative Coding Algorithms in Video File
Compression

Nani Khairani*, Soeb Aripin, Meryance Viorentina Siagian
Faculty of Computer Science and Information Technology, Budi Darma University,Medan,Indonesia
Email: nanikhairani83@gmail.com, suefarifin@gmail.com, meryance1993@gmail.com
(* : nanikhairani83@gmail.com)
Submitted: 06/07/2025; Accepted: 15/07/2024; Published: 23/07/2025

Abstrak- Large video file sizes can burden storage capacity and slow down data transmission, making effective compression methods
essential. WebM, a commonly used video format supported by platforms such as YouTube and Skype, often results in large file sizes that
demand storage efficiency. This study compares two lossless compression algorithms—Elias Delta Code and Interpolative Coding—for
compressing WebM video files. Interpolative Coding applies a non-linear approach based on the entire content of the message, while
Elias Delta Code is an integer-based algorithm efficient for encoding positive numbers. This research is motivated by the lack of direct
comparative studies between these two algorithms in the context of video compression. The objective is to evaluate their performance
based on compression ratio, processing time, and storage efficiency. The results are expected to provide recommendations on the most
suitable compression algorithm for high-complexity video files.

Keywords: data compression; WebM video; Elias Delta Code; Interpolative Coding; compression ratio

1. INTRODUCTION

Data compression is a technique used to reduce the size of data in order to improve efficiency in storage and
transmission. In the context of video files, large file sizes can burden storage capacity and slow down data transmission
processes. Therefore, an effective compression method is needed to address these issues. WebM files are commonly found
in video content. WebM is supported by several web browsers because it is sometimes used in HTMLS5 websites for video
streaming. For example, YouTube uses the WebM video file format for all of its videos, ranging from 360p to higher
resolutions. Similarly, Wikimedia and Skype also utilize the WebM format. Large video file sizes can negatively impact
storage capacity and slow down data delivery. As a result, video compression is essential for reducing file sizes. Each
compression algorithm has its own advantages and disadvantages, making it important to compare Interpolative Coding and
Elias Delta Coding to determine which method is more efficient for compressing video files.

The Interpolative Coding algorithm is an unconventional method for assigning dynamic codes to data symbols.
Unlike traditional compression techniques, the code assigned to each individual symbol is not static; instead, it depends on
the entire message rather than just the symbol and its frequency. The entire message to be encoded must be available to the
encoder in advance. The encoding process involves scanning the message in a specific order—rather than linearly from
beginning to end—and assigning codewords to symbols as they are encountered. On the other hand, Elias Delta Coding is
one of the three universal coding methods developed by Peter Elias. Elias Delta adds a layer of encoding to binary
representations. It is typically used for encoding positive integers and is effective in scenarios where smaller values occur
more frequently, allowing for compact representation. [1].

Previous research conducted by Jamiatul Sisca, titled “Implementation of the Elias Delta Code Algorithm for
Video File Compression in a Video Downloader Application”, concluded that the Elias Delta Code algorithm can be
effectively applied to compress video file sizes, resulting in smaller file sizes after compression [2].

In another study conducted by Desvika Riyansyah, titled "Design of a Video File Compression Application Using
the Interpolative Coding Algorithm", it was concluded that the implementation of the Interpolative Coding algorithm
achieved a compression ratio of 47%[3]. Research conducted by Michael Simangunsong, titled "Comparison of Elias Delta
Code and Unary Coding Algorithms in Forensic Image Compression”, concluded that both Elias Delta Code and Unary
Coding are algorithms capable of compressing forensic images [4]. Another study by Riyo Oktavianty Finola, titled
"Implementation of the Interpolative Coding Algorithm for Audio File Compression”, found that the application of the
Interpolative Coding algorithm to audio files can significantly reduce file size and save storage memory [5].

This study aims to compare two compression algorithms to determine which one is more accurate and efficient in
the process of video file compression. The algorithms under comparison are Elias Delta Code and Interpolative Coding,
both of which are designed for data compression tasks.

Interpolative Coding has demonstrated promising compression ratios in previous experiments, particularly in audio
and video compression, achieving up to 47% compression in certain cases. However, most of these studies have been

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 51

mailto:1novasilaban53@gmail.com
mailto:1novasilaban53@gmail.com

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59
ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index
DOI 10.30865/ijics.v9i2 .8921

conducted independently and focused on specific types of data, such as images or audio, without performing a direct
comparative analysis between the two algorithms in the context of video files.

So far, no study has been found that directly compares the effectiveness of Elias Delta Coding and Interpolative
Coding in compressing WebM-formatted video files, in terms of compression ratio, compression time, or storage efficiency.
Furthermore, there has been no evaluation of the performance of these algorithms under complex video scenarios involving
varying resolutions and extended durations. This gap in the literature serves as the foundation for the present study.

2. RESEARCH METHODOLOGY

In the research framework, the stages carried out in the study are outlined. The research framework consists of several
systematically related phases. These stages are essential to facilitate the execution of the research in a structured and
efficient manner.

Problem Formulation and Research
Objectives

» Selection and Preparation of Video Dataset

A 4

Implementation of Elias Delta and

Compression and Decompression Process 4 Interpolative Coding Algorithms

v

A 4

Compression and Decompression Process Measurement of Compression Results

A 4

Analysis and Performance Comparison Analysis and Performance Comparison

Figure 1. Research Stages

2.1 Data Compression

Data compression is the process of reducing data size by eliminating redundancy without losing essential information. In
the context of video, compression is crucial because video files are typically large and require efficient storage and
transmission[6][7].
Compression can be classified into two types:

1. Lossless Compression: No information is lost, and the original data can be fully restored.

2. Lossy Compression: Some information is discarded to achieve higher efficiency. This method is commonly used

for image and video compression.

2.2 Moving Picture Exprort Gruop (MPEG)-4

Initially, MPEG Video Layer-4 was widely used by computer users. Files encoded with MPEG Video Layer-4 are
typically saved with the .mp4 file extension. Subsequently, MPEG Audio Layer formats also became popularly associated
with the MP4 file type [8]. An MPEG file consists of small units called frames. Typically, each frame is self-contained and
includes a header that holds metadata about that particular frame. Since MPEG files do not contain a global file header, the
file can be split at almost any point, as long as the cuts occur at frame boundaries [9]. n contrast, MP3 files (based on
MPEG-1 Audio Layer I11) may contain frames that are interdependent, where certain frames rely on data from previous

ones—making arbitrary splitting less feasible. [10].
2.3 Elias Delta Code Algorithm

Elias Delta Code is one of the three Elias coding schemes introduced by Peter Elias. This algorithm extends binary encoding
(B) by incorporating a length-prefix mechanism, making it more efficient for encoding larger numbers. Elias Delta Code is

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 52

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59

ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index

DOI 10.30865/ijics.v9i2 .8921

primarily used for encoding positive integers, particularly in applications where the values vary significantly in size and
compact representation is important [2][11].
Encoding Rules Using Elias Delta Code The rules for encoding a number using Elias Delta Code are as follows:
1. Write the number n in binary. The most significant bit (MSB) will always be 1.
2. Count the number of bits in n, remove the leftmost bit (MSB), and prefix the remaining bits with the binary
representation of the bit length of n.
3. Subtract 1 from the bit length obtained in step 2, and prepend that many zeros to the code.
When these steps are applied to n = 17, the result is as follows: 17 = 24 + 1 — binary: 10001, which has 5 bits. The gamma
code of N + 1 (i.e., 5) is: 00101 Removing the leading 1 from 10001 gives: 0001 Therefore, the Elias Delta Code for 17 is:
00101 | 0001
A table showing the Elias Delta Codes for the first 18 positive integers is presented below.
Table 1. Elias Delta Code

1=20 10=2
2=21 11=2
3=21 12=2
4=22 13=2
5=22 14=2
6=22 15=2
7=2 16=2
8=2 17=2
9=2 18=2

2.3 Algoritma Interpolative Code

Interpolative coding is an unconventional method for assigning dynamic codes to data symbols. It differs from traditional
approaches because the code assigned to a symbol is not static and depends on the entire message rather than on the symbol
itself or its probability. The entire message must be available beforehand in order to perform encoding [12]. The encoding is
carried out by scanning the message in a specific, non-sequential order, rather than linearly from beginning to end, and
assigning codewords when symbols are encountered. As a result, the codeword assigned to a symbol depends on the order
of symbols within the message [13].

3. RESULT AND DISCUSSION

This stage of the research plays a crucial role in determining the subsequent steps. The study involves a comparative
analysis of video file compression, specifically using the Elias Delta Code and Interpolative Coding algorithms. The
comparison is intended to identify which algorithm is more accurate and efficient in reducing the file size of WebM-format
video files. The primary goal of video file compression is to optimize storage space.

Before performing the compression, the video file is first examined in hexadecimal format using the HxD application, to
understand how the data is structured at the byte level. Below is an example of a WebM video file that undergoes both
compression and decompression.
1. Analysis of the Video File Compression Process Using Elias Delta Code
a. Importing the File

Table 2. Sample Data

Nama File Video
Extension File Webm
Size 12,1 MB

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 53

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59

ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index

DOI 10.30865/ijics.v9i2 .8921

Figure 2. Contents of the

As a result, the hexadecimal values of the sample video file were obtained. In the manual calculation, 16 hexadecimal
characters from the sample video file were used. These hexadecimal values were taken from left to right.
a. Reading the File Contents

The hexadecimal values extracted from the video file are as follows:

69, 73, 6F, 6D, 69, 73, 6F, 32, 61, 76, 63, 31, 6D, 70, 34, 31.

These data values are entered into a table for frequency analysis. The frequency analysis is performed by counting the

number of times each unique value appears in the dataset. The results of the frequency reading can be seen in the table

below:
Table 3. File Values
Values | Frekuensi

69 2

73 2

6F 2

6D 2

32 1

61 1

76 1

63 1

31 2

70 1

34 1
Total Value 16

Sorting the characters from highest to lowest frequency. The order of the values can be seen in the table below:
Table 4. Sample Video Bit Values

Nilai

. Bit Frek Bit x Frek
Hexa Biner

69 01101001 8 2 16
73 01110011 8 2 16
6F 01101111 8 2 16
6D 01101101 8 2 16
31 00110001 8 2 16
32 00110010 8 1 8
61 01100001 8 1 8
76 01110110 8 1 8
63 01100011 8 1 8
70 01110000 8 1 8
34 00110111 8 1 8

Total Bit 128

Based on the table above, one hexadecimal value (character) is worth 8 bits of a binary number. Up to 16 hexadecimal
numbers have a binary value of 128 bits. To convert a unit to a byte then the total number of bits is shared 8. So 182/8 =
16.

b. Forming the Elias Delta Code Table

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 54

The IJICS (International Journal of Informatics and Computer Science)

Vol 9 No 2, July 2025, Page 51-59

ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index

DOI 10.30865/ijics.v9i2 .8921

The rules in the formation of number codes using elias delta code can be seen in the previous chapter. The elias delta

code can be seen in the table below.

Table 5. Elias Delta Code

N | Elias Delta Code
1 1

2 0100

3 0101

4 01100

5 01101

6 01110

7 01111

8 00100000
9 00100001
10 00100010
11 00100011
12 00100100
13 00100101

The next process is to compress the value from the sample with the elias delta code obtained from the table above. The
process of compressing the sample video file can be seen in the following table:
Table 6. Compression of FileVideo Sample Values with Elias Delta Code

N | Hexavalues | EliasDeltaCode | Bit | Frek [BitxFrek

1 69 1 1 2 2

2 73 0100 4 2 8

3 6F 0101 4 2 8

4 6D 01100 5 2 10

5 31 01101 5 2 10

6 32 01110 5 1 5

7 61 01111 5 1 5

8 76 00100000 8 1 8

9 63 00100001 8 1 8

10 70 00100010 8 1 8

11 34 00100011 8 1 8
Total Bit 80

From calculations table in top after compressed with Using Elias delta code.80 bit. To be

changed become unit byte Mark divided 8 i.e 80/8 = Sec. 10.

1. Perform the result of the elias delta code bit string
the hexadecimal values before compression i.e. 69, 73, 6F, 6D, 69, 73, 6F, 32, 61, 76, 63, 31, 6D, 70, 34, 31 (without
commas and spaces) become binary bit values :
“10100010101100101000101011100111100100000001000010110101100001000100010001101101".

The total overall bit length after the addition of bits is 80+8+8=96. Next, separate the bits into groups. Each group consists

of 8 bits:

10100010 10110010 10001010 11100111 10010000 00010000 10110101 10000100

0000000100001001

The compressed values can be seen in the table below.

Table 7. Compressed Hexadecimal Values

Decimal Value | Character
162 ¢
178 2
138 S
231 C

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

01000100 01101101

Page 55

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59
ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index
DOI 10.30865/ijics.v9i2 .8921

144 90
16 10
181 V]
132 ”
68 D
109 M
1 2
9
7—n +%1”
7—-0-+“1”=00000001
Final Bit 9 —n

Final Bit =9 — 0 = 9 =00001001

Data size before compression = 128/8 = 16 bytes

Compressed data size = 96/8 = 12 bytes

Based on this data, the compression performance can be calculated, namely:

- Compression Ratio (Cr)
_ Ukuran data Sesudah Dikompresi

X 100%

" Ukuran data Sebelum Dikompresi
Cr=-2x100%
Cr=75%
- Space Saving
SS = Data size before compression — Data size after compression
SS =128- 92
SS =36
1. Analyze the decompression process of video files using Elias Delta Code
Analysis of all bits from the previous compression results is carried out to carry out the decompression process. As
for the overall bits and combined compression results, namely :
“10100010 10110010 10001010 11100111 10010000 00010000 10110101 10000100 01000100 01101101 00000001
00001001
1. The initial decompression process is to read the value of the flag bit of all the bits by changing the value of the last 8 bits
to a decimal value such as 00001001 = 9. The value of 9 is 8 bit values that are at the time of padding before adding
flag bits.
2. Next remove the bit flag and padding from the overall value of the bits so that menjadi “10100010 10110010 10001010
11100111 10010000 00010000 10110101 10000100 01000100 01101101
1. Bit checking is by checking bits from the first bit with the elias delta code table. If a bit is found that matches the delta
elias code table , then change the appropriate string value so that you will get the result of the table as below.
Table 8. Decompression results using elias delta code

Char Character Biner
¢ 162 10100010
2 178 10110010
S 138 10001010
C 231 11100111
90 144 10010000
10 16 00010000
L 181 10000100
) 132 01000100
D 68 01101101

So the results are "69, 73, 6F, 6D, 69, 73, 6F, 32, 61, 76, 63, 31, 6D, 70, 34, 31".
Compression and Decompression Process with Interpolative Coding Algorithm Sorting to the smallest frequency.
Table 9. Nilai Bit Video Sample

Bit Frek Bit x Frek

Nilai
Hexa Biner

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 56

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59
ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index
DOI 10.30865/ijics.v9i2 .8921

69 01101001 8 2 16
73 01110011 8 2 16
6F 01101111 8 2 16
6D 01101101 8 2 16
31 00110001 8 2 16
32 00110010 8 1 8
61 01100001 8 1 8
76 01110110 8 1 8
63 01100011 8 1 8
70 01110000 8 1 8
34 00110111 8 1 8

Total Bit 128

So 128/8 = 16.
1. Forming Interpolative Coding Tables
Table 10. Kode Interolative Coding

N | Kode Elias Delta

1 1001

2 1111

3 100

4 10111

5 100

6 1000

7 010

8 100011

9 010

10 100

11 010

12 010

13 1001

Interpoltive coding obtained from the table above. As for the file compression process

Table 11. Compression of Sample Video File Values with Interpolative Coding

N | HexaValues | Kode Interpolative | Bit | Frek | BitxFrek
1 69 1001 4 2 8
2 73 1111 4 2 8
3 6F 100 3 2 6
4 6D 10111 5 2 10
5 31 100 3 2 6
6 32 1000 4 1 4
7 61 010 3 1 3
8 76 100011 6 1 6
9 63 010 3 1 3
10 70 100 3 1 3
11 34 010 3 1 3
Total Bit 60

From the calculation of the table above after being compressed using elias delta codeis 60 bits. To convert it into a byte
unit, it is divided by 8 i.e. 60/8 = 7.5.
a. Performing the result of the elias delta interpolative coding bit string

7 e
70+ “1” = 00000001
Bit Akhir 9 —n
Bit Akhir = 9 — 0 = 9 = 00001001
b. String bits that have been added

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 57

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59

ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index

DOI 10.30865/ijics.v9i2 .8921

The total overall bit length after the addition of bits is 60+4+8=96. Next, separate the bits into groups. Each group
consists of 8 bits as shown below

10011111100101111001111110010000101000110101001011110001 0100000100000101
String Bit Divisions
The compressed values can be seen in the table below.
Table 12. Compressed Hexadecimal Values
Decimal Value | Character
159 Y
151 —

159 Y
144
163 £

82 R
241 N

65 A

Data size before compression = 128/8 = 16 bytes
Compressed data size = 72/8 = 9 bytes
Based on this data, the compression performance can be calculated, namely:

Compression Ratio (Cr)
_ Ukuran data Sesudah Dikompresi

x 100%

" Ukuran data Sebelum Dikompresi
Cr==x100%
Cr =56, 25%
Space Saving
SS = data size before compression — data size after compression
SS=128-72
SS =56
c. Comparison of Elias Delta Code Algorithm and Interpolative Coding
The comparison of the elias delta code algorithm and interpolative coding is the result of the compression ratio of the
elias delta code algorithm of 75% and space saving of 36, while of the large interpolative coding algorithm the
compression ratio is 56.25% and space saving is 56. So from the results obtained, the compression ratio of the elias delta
code algorithm is compared to the interpolative coding algorithm.

4. CONCLUSION

Compression of video files can be done by converting them into hexadecimal shapes with the application of hxd. The
hexadecimal numbers obtained are processed with elias delta code algorithms and interpolative coding so as to produce
new hexadecimal number values from the video file that has been calculated. After the video file compression process, the
compression ratio and space saving are obtained from elias delta code and interpolative coding. The compression and space
saving ratios of the two algorithms are used as a comparison of the elias delta code algorithm and interpolative coding. The
compression ratio of elias delta code is 75% and the compression ratio of interpolative coding algorithms is 56.25%. It can
be said that the compression of video files with the elias delta code algorithm gets a greater compression ratio.

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 58

The IJICS (International Journal of Informatics and Computer Science)
Vol 9 No 2, July 2025, Page 51-59

ISSN 2548-8384 (online), ISSN 2548-8449 (print)

Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/ijics/index

DOI 10.30865/ijics.v9i2 .8921

REFERENCES

[1] N. F. Rizky, S. D. Nasution, and F. Fadlina, “Penerapan Algoritma Elias Delta Codes Dalam Kompresi File Teks,”
Build. Informatics, Technol. Sci., vol. 2, no. 2, pp. 109-114, 2020, doi: 10.47065/bits.v2i2.138.

[2] J. Sisca, “Penerapan Algoritma Elias Delta Code Untuk Kompresi File Video Pada Aplikasi Video Downloader,”
vol. 1, no. 4, pp. 254-264, 2021.

[3] D. Riyansyah, “Perancangan Aplikasi Kompresi File Video Menggunakan Algoritma Interpolative Coding,”
KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 392-397, 2019, doi:
10.30865/komik.v3i1.1618.

[4] M. Simangunsong, “Perbandingan Algoritma Elias Delta Code Dan Unary Coding Dalam Kompresi Citra
Forensik,” vol. 12, no. 1, pp. 18-26, 2020.

[5] R. O. Finola, “Penerapan Algoritma Interpolative Coding Untuk Kompresi File Audio,” KOMIK (Konferensi Nas.
Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 378-384, 2019, doi: 10.30865/komik.v3i1.1616.

[6] K. Sayood, Introduction to Data Compression (5th ed.). Morgan Kaufmann Publishers, 2017.

[7] G. Salomon, David and Motta, Handbook of Data Compression. Springer, 2020. doi: 10.1007/978-3-030-38879-5.

[8] K. R. Rao and J. J. Hwang, Techniques and Standards for Image, Video, and Audio Coding. New York: Springer,
2011. doi: 10.1007/978-1-4419-1818-1.

[9] R. Igbal, F. Doctor, A. Khelifi, and C. Maple, “A review on video streaming techniques, challenges and
opportunities in 5G networks,” Multimed. Tools Appl., vol. 80, pp. 26203-26234, 2021, doi: 10.1007/s11042-021-
11040-x.

[10] D. Igbal, “Implementasi Algoritma Levenstein Untuk Kompresi File Video Pada Aplikasi Chatting Berbasis
Android,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 266-273, 2019, doi:
10.30865/komik.v3i1.1601.

[11] A. Moffat and A. Turpin, Compression and Coding Algorithms. Boston, MA: Springer, 2002.

[12] D. Salomon and G. Motta, Handbook of data compression. 2010. doi: 10.1007/978-1-84882-903-9.

[13] R. V. Giuseppe Ottaviano, “Partitioned Elias-Fano Indexes,” ACM Trans. Inf. Syst., 2020, doi: 10.1145/3386259.

Copyright © 2025, Nani Khairani. This is an open access article distributed under the Creative Commons Attribution License,
Ev which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Page 59

