Optimasi K-Means Menggunakan Algoritma Genetika pada Metode User-based Collaborative Filtering

Authors

  • Axl Adilla Universitas Jenderal Soedirman
  • Affi Nizar Suksmawati Universitas Widya Gama
  • Affifah Mutiara Pertiwi Universitas Telkom Surabaya
  • Kharis Suryandaru Pratama Perumdam Tirta Satria Purwokerto

DOI:

https://doi.org/10.30865/json.v7i2.9382

Keywords:

Algorima Genetika, Algorithms K-Means, User-Based Collaborative Filtering, Sistem Rekomendasi, Jaccard Similarity Coefficient, Sørensen–Dice Coefficient, Hamming Coefficient

Abstract

Collaborative filtering merupakan teknik sistem rekomendasi yang menggunakan informasi rating dari beberapa pengguna untuk memprediksi rating suatu item bagi pengguna tertentu. Namun, tidak semua pengguna memberikan rating pada seluruh item. Hal ini menyebabkan ketidakmampuan sistem dalam menentukan nearest neighborhood, sehingga rekomendasi yang dihasilkan menjadi lemah. Penelitian ini mengusulkan penggunaan Algoritma K-Means untuk mengelompokkan neighborhood yang sesuai. Penentuan awal titik pusat klaster pada Algoritma K-Means dioptimalkan menggunakan Algoritma Genetika. Evaluasi dilakukan dengan memvariasikan jumlah klaster optimal pada beberapa metode pengukuran yang digunakan, yaitu Jaccard Similarity Coefficient, Sørensen–Dice Coefficient, dan Hamming Coefficient. Hasil pengujian menggunakan pengukuran Jaccard Similarity Coefficient, Sørensen–Dice Coefficient, dan Hamming Coefficient memperoleh nilai fitness masing-masing sebesar 4.490, 4.979, dan 4.964 untuk jumlah klaster optimal 4 dan 6. Sementara itu, nilai MAPE rata-rata untuk ketiga metode pengukuran kemiripan tersebut sebesar 60%.

References

A. N. Khusna, K. P. Delasano, and D. C. E. Saputra, “Penerapan User-Based Collaborative Filtering Algorithm,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, pp. 293–304, May 2021, doi: 10.30812/matrik.v20i2.1124.

F. Ramadhan and A. Musdholifah, “Online Learning Video Recommendation System Based on Course and Sylabus Using Content-Based Filtering,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 3, p. 265, Jul. 2021, doi: 10.22146/ijccs.65623.

C. Wibisono, L. S. Haryadi, J. E. Widyaya, and S. L. Liliawati, “Sistem Rekomendasi Suku Cadang Berdasarkan Item Based Filtering,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3036.

H. S. Kusuma and A. Musdholifah, “Recommendation System for Thesis Topics Using Content-based Filtering,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 1, p. 65, Jan. 2021, doi: 10.22146/ijccs.62716.

I. W. Jepriana and R. Wardoyo, “Algoritme Genetika untuk Mengurangi Galat Prediksi Metode Item-based Collaborative Filtering,” Journal of Mathematics and Natural Sciences (BIMIPA), vol. 25, no. 2, 2018.

Hadi, Ichwanto, L. W. Santoso, and A. N. Tjondrowiguno, “Sistem Rekomendasi Film menggunakan User-based Collaborative Filtering dan K-modes Clustering,” Infra, vol. 8, no. 1, pp. 228–234, 2020.

Masykur and M. Iqbal Rofikurrahman, “IMPLEMENTASI METODE DICE SIMILARITY DALAM PERANCANGAN SISTEM REKOMENDASI ARTIKEL BERITA,” in Seminar Informatika Aplikatif Polinema, 2020, pp. 532–536.

I. Ishak, A. Yahya, and Y. Yusri, “Book Recommendation System Based on Collaborative Filtering: User-Based, Item-Based, and Singular Value Decomposition Analysis,” Journal of System and Computer Engineering (JSCE), vol. 6, no. 4, pp. 329–342, Oct. 2025, doi: 10.61628/jsce.v6i4.2201.

B. D. Okkalioglu, “A Novel Hybrid Item-Based Similarity Method to Mitigate the Effects of Data Sparsity in Multi-Criteria Collaborative Filtering,” IEEE Access, vol. 13, pp. 64660–64686, 2025, doi: 10.1109/ACCESS.2025.3559398.

Y. Zhu, J. Zhang, Y. Bai, W. Wang, and D. Ma, “Research on movie recommendation algorithm based on K-means++ collaborative filtering,” IET Conference Proceedings, vol. 2025, no. 20, pp. 301–304, Sep. 2025, doi: 10.1049/icp.2025.2767.

H. J. Suryanto, A. R. C, and Y. Lukito, “Indoor Positioning System dengan Algoritma K-Means dan KNN,” Jurnal Teknik Informatika dan Sistem Informasi (JuTISI), vol. 2, no. 3, 2016.

R. Pormes and D. H. F. Manongga, “Penggunaan Algoritma Clustering K-means Untuk Melihat Daerah-Daerah Penyuplai Mahasiswa Di Universitas Kristen Satya Wacana, Salatiga.,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 5, no. 3, Jan. 2020, doi: 10.28932/jutisi.v5i3.1968.

Taslim, D. Toresa, D. Jollyta, D. Suryani, and E. Sabna, “Optimasi K-Means dengan Algoritma Genetika untuk Target Pemanfaat Air Bersih Provinsi Riau,” Indonesian Journal of Computer Science, vol. 10, no. 1, Jul. 2022, doi: 10.33022/ijcs.v10i1.3064.

Y. Istianto and S. ’Uyun, “Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 5, p. 861, Oct. 2021, doi: 10.25126/jtiik.2021842990.

M. Abdi, G. Okeyo, and R. Mwangi, “Improved Collaborative Filtering Recommender System Based on Hybrid Similarity Measures,” The International Arab Journal of Information Technology, vol. 22, no. 1, Jan. 2025, doi: 10.34028/iajit/22/1/8.

I. Syafii, C. Edi Widodo, and J. Endro Suseno, “Expert System Diagnose Broiler Chicken Diseases using Case Based Reasoning Method and Sorensen Dice Coefficient,” E3S Web of Conferences, vol. 448, p. 02067, Nov. 2023, doi: 10.1051/e3sconf/202344802067.

F. Yuniardini and T. Widiyaningtyas, “Analisis Perbandingan Pearson Correlation dan Cosine Similarity pada Rekomendasi Musik berbasis Collaborative Filtering,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 2, pp. 555–564, Dec. 2024, doi: 10.29408/edumatic.v8i2.27781.

H. F. Mustika and A. Musdholifah, “Book Recommender System Using Genetic Algorithm and Association Rule Mining,” Computer Engineering and Applications Journal, vol. 8, no. 2, pp. 85–92, Jun. 2019, doi: 10.18495/comengapp.v8i2.305.

S. H. Novianti, E. C. Djamal, and A. Komarudin, “Optimalisasi Distribusi Harga Tiket Pesawat berdasarkan Kepadatan Rute Menggunakan Algoritma Genetika,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 5, no. 2, Sep. 2019, doi: 10.28932/jutisi.v5i2.1756.

C. Rozikin and A. Solichin, “Implementasi Algoritma Genetika dan Regresi Linier Berganda Untuk Prediksi Persediaan Bahan Makanan Pada Restoran Cepat Saji,” in Prosiding Seminar Nasional Multidisiplin Ilmu, 2017.

Downloads

Published

2025-12-31

How to Cite

Adilla, A., Suksmawati, A. N., Pertiwi, A. M., & Pratama, K. S. (2025). Optimasi K-Means Menggunakan Algoritma Genetika pada Metode User-based Collaborative Filtering . Jurnal Sistem Komputer Dan Informatika (JSON), 7(2), 470–478. https://doi.org/10.30865/json.v7i2.9382