Detecting Deepfake Videos Using CNN and GRU Methods: Evaluating Performance on the Celeb-DF(v2) Dataset

Authors

  • Rusdi Afandi Universitas Telkom Bandung
  • Bedy Purnama Universitas Telkom Bandung

DOI:

https://doi.org/10.30865/json.v7i2.9372

Keywords:

deepfake, CNN, GRU, video detection, deep learning

Abstract

The development of deep learning technology has allowed the emergence of the phenomenon of deepfakes, which is the manipulation of digital videos that resemble real videos with a high level of realism. These technologies pose serious threats to privacy, digital security, and the spread of false information. As the quality of deepfake videos increases, the detection of this fake content becomes increasingly challenging. This study aims to design and evaluate a deepfake video detection model using a combination of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU). CNN is used to extract spatial features from each video frame, while GRU is used to capture the temporal relationships between frames. The dataset used is Celeb-DF(v2), which is a benchmark dataset that contains real videos and high-quality deepfake videos. The CNN-GRU model was trained and tested on the dataset, and its performance was evaluated using accuracy, precision, recall, and F1-score metrics.

References

M. Farwati, I. Talitha Salsabila, K. Raihanun Navira, T. Sutabri, en U. Bina Darma Palembang, "Analysis of the influence of artificial intelligence (AI) technology in daily life", J. Sist. Inform. and Management, vol 11, no 1, bll 41–42, 2023,doi: 10.47024/js.v11i1.563.

Y. Patel et al., "Deepfake Generation and Detection: Case Study and Challenges", IEEE Access, vol 11, December 2023, bll 143296–143323, 2023, doi: 10.1109/ACCESS.2023.3342107.

A. A. Owie, E. Wibowo, and A. F. Yogyakarta, "THE USE OF ARTIFICIAL INTELLIGENCE IN THE MAKING OF FILM PROPERTY DESIGN", bll 130–138.

M. Yudha, "Legal protection for victims of deepfake use in pornographic crimes", vol 2, no 1, 2025.

T. Zhafira, "The role of international law in addressing the threat of deepfake technology to global security", November no, 2024, doi: 10.13140/RG.2.2.31626.68806.

H. F. Fadhilah, "Advantages and Challenges in the Use of Computer Vision for the Diagnosis of Pediatric Pneumonia: A Systematic Review", vol 5, no 1, 2024, doi: 10.7454/bikfokes.v5i1.1077.

Y. D. Zhang, S. C. Satapathy, S. Liu, and G. R. Li, "A five-layer deep convolutional neural network with stochastic pooling for chest CT-based COVID-19 diagnosis", Mach. Vis. Appl., vol 32, no 1, bll 1–13, 2021, doi: 10.1007/s00138-020-01128-8.

W. Nagy, H. Alsalamah, M. Hassan, and E. Moahamed, "AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design", Hell, vol 9, bl e13636, Feb 2023, doi: 10.1016/j.heliyon.2023.e13636.

Y. Xu, J. Liang, G. Jia, Z. Yang, Y. Zhang, and R. He, "TALL: Thumbnail Layout for Deepfake Video Detection", Proc. IEEE Int. Conf. Comput. Vis., BLL 22601–22611, 2023, doi: 10.1109/ICCV51070.2023.02071.

S. AYDIN, Ö. ÇAYLI, V. KILIÇ, and A. ONAN, "Sequence-to-Sequence Video Captioning with Residual Connected Gated Recurrent Units", Eur. J. Sci. Technol., no. 35, bll 380–386, 2022, doi: 10.31590/ejosat.1071835.

H. Namdari, A. Haghighi, and S. M. Ashrafi, "Short-term urban water demand forecasting; application of 1D convolutional neural network (1D CNN) in comparison with different deep learning schemes", Stoch. Approximately. Res. Risk Assess., bll 1–16, Sep 2023, doi: 10.1007/s00477-023-02565-3.

D. Aldiani, G. Dwilestari, H. Susana, R. Hamonangan, en D. Pratama, "Implementation of CNN Algorithm in Facial Recognition-Based Attendance System", J. Inform. Polynesian, vol 10, no 2, bll 197–202, 2024, doi: 10.33795/jip.v10i2.4852.

N. R. Muntiari and K. H. Hanif, "Classification of Breast Cancer Disease Using Comparative Machine Learning Algorithms," J. Computing Science. and Technology., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.35960/ikomti.v3i1.766.

N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, "Analysis of Sentiment Classification of Online Schools on Twitter Using Supervised Machine Learning," J. Tek. Inform. and Sist. Inf., vol. 7, no. 1, pp. 47–58, 2021, doi: 10.28932/jutisi.v7i1.3216.

A. Ouadah, L. Zemmouchi-Ghomari, and N. Salhi, "Selecting an appropriate supervised machine learning algorithm for predictive maintenance," Int. J. Adv. Manuf. Technol., vol. 119, Apr. 2022, doi: 10.1007/s00170-021-08551-9.

Muttaqin, D. Fernando, and S. Sulastriani, "Implementation of Unsupervised Learning on the Physical Value of Uniformity of State Police Schools with the Clustering Analysis Method," J. PROSISKO, vol. 10, no. 1, 2023.

J. Ghahremani-Nahr, H. Nozari, and M. E. Sadeghi, "Artificial intelligence and Machine Learning for Real-world problems (A survey)," Int. J. Innov. Eng., vol. 1, pp. 38–47, Oct. 2021, doi: 10.59615/ijie.1.3.38.

A. Baradja and T. I. Tjendrowasono, "Application of Deep Reinforcement Q-Learning for Automated Forex Trading Predictions," J. Rekayasa Sist. Inf. and Technology., vol. 1, no. 3, pp. 190–198, 2024, doi: 10.59407/jrsit.v1i3.519.

E. Baccour et al., Pervasive AI for IoT Applications: Resource-efficient Distributed Artificial Intelligence. 2021. doi: 10.48550/arXiv.2105.01798.

M. R. S. Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, "The Use of Python as a Programming Language for Machine Learning and Deep Learning," Works of Ilm. Mhs. Bertauhid (KARIMAH TAUHID), vol. 2, no. 1, pp. 1–6, 2023.

M. F. Naufal and S. F. Kusuma, "Comparison Analysis of Machine Learning and Deep Learning Algorithms for Image Classification of Indonesian Language Signing Systems (Sibi)," Jtiik, vol. 10, no. 4, pp. 873–882, 2023, doi: 10.25126/jtiik.2023106828.

A. M. Alhassan and W. M. N. W. Zainon, "Brain tumor classification in magnetic resonance image using hard swish-based RELU activation function-convolutional neural network," Neural Computing. Appl., vol. 33, no. 15, pp. 9075–9087, 2021, doi: 10.1007/s00521-020-05671-3.

Q. Wang, Y. Ma, K. Zhao, and Y. Tian, "A Comprehensive Survey of Loss Functions in Machine Learning," Ann. Data Sci., vol. 9, no. 2, pp. 187–212, 2022, doi: 10.1007/s40745-020-00253-5.

Downloads

Published

2025-12-31

How to Cite

Afandi, R., & Purnama, B. (2025). Detecting Deepfake Videos Using CNN and GRU Methods: Evaluating Performance on the Celeb-DF(v2) Dataset . Jurnal Sistem Komputer Dan Informatika (JSON), 7(2), 448–458. https://doi.org/10.30865/json.v7i2.9372