Analisis Kecanduan Pornography Berdasarkan Signal Electroencephalogram Menggunakan Algoritma Deep Learning

Authors

  • william owen wijaya Universitas Prima Indonesia
  • Fernando Universitas Prima Indonesia
  • Dhanny Rukmana Manday Universitas Prima Indonesia
  • Allwin M. Simarmata Universitas Prima Indonesia
  • Adli Abdillah Nababan Bina Nusantara Univesity

DOI:

https://doi.org/10.30865/json.v7i2.9326

Keywords:

Electroencephalography, Deep Learning, Pornografi, GRU, Signal EEG

Abstract

Deteksi objektif kecanduan pornografi masih menjadi tantangan signifikan, seringkali menghambat intervensi klinis yang efektif. Penelitian ini bertujuan mengembangkan model klasifikasi Deep Learning untuk mendeteksi kecanduan pornografi secara non-invasif berdasarkan sinyal Electroencephalography (EEG). Penelitian ini menerapkan arsitektur Gated Recurrent Unit (GRU) untuk menganalisis data EEG yang diperoleh dari 14 responden menggunakan 19 channel. Data mentah diproses melalui tahapan filtering, Independent Component Analysis (ICA) untuk artifact removal, dan normalisasi. Hasil pengujian menunjukkan model GRU yang diusulkan berhasil mencapai akurasi 94,14%, dengan nilai precision dan recall seimbang (94%), serta F1-score 0,94 untuk kedua kelas (kecanduan dan non-kecanduan). Temuan ini menunjukkan bahwa arsitektur GRU sangat efektif untuk membedakan pola aktivitas otak antara individu pecandu dan non-pecandu. Penelitian ini berkontribusi menyediakan landasan ilmiah bagi pengembangan alat bantu diagnosis otomatis yang lebih akurat untuk menunjang program diagnosis dan rehabilitasi.

References

S. Mufti Prasetiyo, R. Gustiawan, and F. Rizzel Albani, “BIIKMA : Buletin Ilmiah Ilmu Komputer dan Multimedia Analisis Pertumbuhan Pengguna Internet Di Indonesia,” vol. 2, no. 1, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/biikma

R. Nastiti, “Strategi Pencegahan Pornografi dan Pornoaksi Berbasis Pendidikan Karakter Islam pada Remaja di Era Digital: Tinjauan Tafsir Ath-Thabari An-Nur Ayat 30-31,” J. Miftahul Ilmi J. Pendidik. Agama Islam, vol. 2, pp. 131–144, Apr. 2025, doi: 10.59841/miftahulilmi.v2i2.101.

S. Ahmada Fa’ida and R. D. Noorrizki, “Dampak Adiktif Pornografi pada Remaja,” J. Flourishing, vol. 3, no. 7, pp. 278–285, doi: 10.17977/10.17977/um070v3i72023p278-285.

A. N. Ramadani, “Tahun 2023 ANALISIS KESTABLAN MODEL MATEMATIKA KECANDUAN PORNOGRAFI DI KALANGAN PELAJAR DAN MAHASISWA”.

S. Saputra and M. Adyna Movitaria, “ANALISIS KEMAMPUAN KOGNITIF PADA REMAJA PECANDU PORNOGRAFI,” vol. 2, no. 2, pp. 178–191, 2022, doi: 10.55062/2021/IJPI.

D. Supantini, D. Gunawan, D. Harnandi, and D. Chandrasasmita, “Classification of Electroencephalogram Signal of Sleeping Condition as Output of EEG Digital Device of Clinical Neurophysiology Laboratory of Immanuel Hospital Using Support Vector Machine,” vol. 6, no. 2, 2022, doi: 10.29099/ijair.v6i2.447.

M. J. Rivera, M. A. Teruel, A. Maté, and J. Trujillo, “Diagnosis and prognosis of mental disorders by means of EEG and deep learning: a systematic mapping study,” Artif. Intell. Rev., vol. 55, no. 2, pp. 1209–1251, Feb. 2022, doi: 10.1007/s10462-021-09986-y.

P. Pandey and K. R. Seeja, “Subject independent emotion recognition from EEG using VMD and deep learning,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 1730–1738, 2022, doi: https://doi.org/10.1016/j.jksuci.2019.11.003.

O. Prasetia, S. Machfud, P. Rosyani, and B. Agustian, “BULLETIN OF COMPUTER SCIENCE RESEARCH Klasifikasi Gender Berbasis Citra Wajah Menggunakan Clustering Dan Deep Learning,” Media Online, vol. 5, no. 4, pp. 770–777, 2025, doi: 10.47065/bulletincsr.v5i4.581.

M. Kurniawan, A. Rachman, A. Pakarbudi, J. T. Informmatika, T. Adhi, and T. Surabaya, “Kurniawan, Review Pemanfataan Data Electroencephalogram (EEG) dengan metode Convolution Neural Network 143 Review Pemanfataan Data Electroencephalogram (EEG) dengan metode Convolution Neural Network.”

D. Merlin Praveena, D. Angelin Sarah, and S. Thomas George, “Deep Learning Techniques for EEG Signal Applications – A Review,” IETE J. Res., vol. 68, no. 4, pp. 3030–3037, July 2022, doi: 10.1080/03772063.2020.1749143.

T. R. Mim et al., “GRU-INC: An inception-attention based approach using GRU for human activity recognition,” Expert Syst. Appl., vol. 216, p. 119419, 2023, doi: https://doi.org/10.1016/j.eswa.2022.119419.

M. Bouchane, W. Guo, and S. Yang, “Hybrid CNN-GRU Models for Improved EEG Motor Imagery Classification,” Sensors, vol. 25, no. 5, Mar. 2025, doi: 10.3390/s25051399.

K. Prayogi, W. Gata, and D. P. Kussanti, “Prediksi Harga Saham Bank Central Asia Menggunakan Algoritma Deep Learning GRU,” Jutisi J. Ilm. Tek. Inform. Dan Sist. Inf., vol. 13, no. 1, pp. 647–658, 2024.

R. Nugraha, Abdul Rezha Efrat Najaf, and Reisa Permatasari, “BCA Stock Price Prediction Using Time Series Method With GRU (Gated Recurrent Unit),” J. Teknol. DAN OPEN SOURCE, vol. 8, no. 2, pp. 432–440, Oct. 2025, doi: 10.36378/jtos.v8i2.4500.

T. Perumal, N. Mustapha, R. Mohamed, and F. M. Shiri, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models,” J. Artif. Intell., vol. 6, no. 1, pp. 301–360, 2024, doi: 10.32604/jai.2024.054314.

L. A. Moctezuma, Y. Suzuki, J. Furuki, M. Molinas, and T. Abe, “GRU-powered sleep stage classification with permutation-based EEG channel selection,” Sci. Rep., vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-68978-4.

S. Gao, J. Yang, T. Shen, and W. Jiang, “A Parallel Feature Fusion Network Combining GRU and CNN for Motor Imagery EEG Decoding,” Brain Sci., vol. 12, no. 9, Sept. 2022, doi: 10.3390/brainsci12091233.

P. K. Sahu and K. Jain, “Schizophrenia diagnosis using the GRU-layer’s alpha-EEG rhythm’s dependability,” Psychiatry Res. Neuroimaging, vol. 344, p. 111886, 2024, doi: https://doi.org/10.1016/j.pscychresns.2024.111886.

Downloads

Published

2025-12-31

How to Cite

wijaya, william owen, Fernando, Dhanny Rukmana Manday, Allwin M. Simarmata, & Adli Abdillah Nababan. (2025). Analisis Kecanduan Pornography Berdasarkan Signal Electroencephalogram Menggunakan Algoritma Deep Learning . Jurnal Sistem Komputer Dan Informatika (JSON), 7(2), 375–383. https://doi.org/10.30865/json.v7i2.9326