Evaluasi Komparatif Model Regresi Prediksi Saham BBCA dengan Analitik dan Visualisasi Interaktif Menggunakan Streamlit
DOI:
https://doi.org/10.30865/json.v7i2.9119Keywords:
Prediksi Harga Saham; Regresi Linier; Ridge Regression; Lasso Regression; Feature Engineering; Evaluasi ModelAbstract
Ketidakstabilan harga saham yang dipengaruhi oleh faktor fundamental dan teknikal menimbulkan kompleksitas dalam proses prediksi serta menuntut model yang akurat dan mampu melakukan generalisasi. Penelitian sebelumnya masih berfokus pada regresi linier konvensional tanpa membandingkannya dengan metode regularisasi maupun menelaah kontribusi rekayasa fitur dalam meningkatkan performa prediktif. Kontribusi penelitian ini adalah mengevaluasi dan membandingkan efektivitas Regresi Linier, Ridge Regression, dan Lasso Regression dalam memprediksi harga penutupan saham PT Bank Central Asia Tbk (BBCA). Kebaruan penelitian ini terletak pada penerapan tahapan preprocessing dan feature engineering yang menghasilkan tujuh variabel turunan, yaitu daily range, open–close change, daily return, lag features, moving average, volatility, dan transformasi logaritmik. Evaluasi model menggunakan Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), dan koefisien determinasi (R²). Hasil utama menunjukkan bahwa Regresi Linier memiliki akurasi tinggi pada data pelatihan namun mengalami overfitting pada data uji, Ridge Regression tidak memberikan peningkatan stabilitas yang berarti, sedangkan Lasso Regression menjadi model paling stabil dengan nilai R² sebesar 0,8247. Temuan ini memberikan manfaat berupa dasar pemilihan metode prediksi yang lebih stabil dan akurat untuk digunakan dalam analisis harga saham dengan volatilitas tinggi.
References
E. Siska, O. Duraipandi, and P. Widodo, “Determinants of Indonesian stock market development: Implementation of an ARDL bound testing approach,” Investment Management and Financial Innovations, vol. 20, no. 4, pp. 69–82, Oct. 2023, doi: 10.21511/imfi.20(4).2023.07.
T. B. Shahi, A. Shrestha, A. Neupane, and W. Guo, “Stock price forecasting with deep learning: A comparative study,” Mathematics, vol. 8, no. 9, p. 1441, Aug. 2020, doi: 10.3390/math8091441.
S. A. L. Satriyo, A. R. Pratama, and Rahmat, “Perbandingan metode linear regresi dan polynomial regresi untuk memprediksi harga saham studi kasus Bank BCA,” INFOTECH: Journal of Information Technology, vol. 4, no. 1, Jun. 2023, doi: 10.37373/infotech.v4i1.602.
S. Soewignjo, Sediono, M. F. F. Mardianto, and E. Pusporani, “Prediksi harga saham Bank BCA (BBCA) pasca stock split dengan artificial neural network dengan algoritma backpropagation,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 4, pp. 1683–1693, Oct. 2023, doi: 10.33379/gtech.v7i4.3363.
E. M. Raouhi, M. Lachgar, and A. Kartit, “Comparative study of regression and regularization methods: Application to weather and climate data,” in WITS 2020, S. Bennani et al., Eds. Singapore: Springer, 2022, pp. 233–240, doi: 10.1007/978-981-33-6893-4_22.
S. K. Safi et al., “Optimizing linear regression models with Lasso and Ridge regression: A study on UAE financial behavior during COVID-19,” Migration Letters, vol. 20, no. 6, pp. 139–153, Sep. 2023, doi: 10.59670/ml.v20i6.3468.
A. J. Daniel, M. D. Ibrahim, and A. A. Josaphat, “Modeling stock data using multiple linear regression and LASSO regression analysis,” Mikailalsys Journal of Mathematics and Statistics, vol. 3, no. 2, pp. 490–499, Jun. 2025, doi: 10.58578/mjms.v3i2.5927.
E. A. Gultom, K. D. S. Susilowati, and A. Kusmintarti, “Design of a stock forecasting dashboard using Python-Streamlit and FB Prophet with AI,” Formosa Journal of Science and Technology, vol. 3, no. 11, pp. 2445–2464, Nov. 2024, doi: 10.55927/fjst.v3i11.12216.
P. Mittal, S. Kanimozhi, and L. Sairamesh, Interactive and Dynamic Stock Market Dashboard. CRC Press, 2024.
R. Zapar et al., “Penerapan model regresi linier untuk prediksi harga saham Bank BCA pada Bursa Efek Indonesia,” JATI: Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, Feb. 2024, doi: 10.36040/jati.v8i1.8215.
S. D. Saputra and A. D. Widiantoro, “BBCA stock price prediction using linear regression method,” International Journal of Artificial Intelligence Science, vol. 1, no. 1, pp. 25–36, Sep. 2024, doi: 10.63158/IJAIS.v1.i1.7.
R. Anbu, R. Krishnamoorthi, and A. KamalNath, “A comparative analysis of linear regression and LSTM for stock price prediction,” International Journal of Research Publication and Reviews, vol. 6, no. 5, pp. 15122–15128, 2025.
M. Q. Shobri et al., “Model analisis harga saham sektor finansial PT Bank Central Asia Tbk (BBCA),” Jurnal Keilmuan dan Keislaman, pp. 260–269, Dec. 2023, doi: 10.23917/jkk.v2i4.170.
J. Iworiso, “Forecasting stock market out-of-sample with regularised regression training techniques,” International Journal of Economics, Finance and Management, vol. 11, no. 1, pp. 1–12, May 2023, doi: 10.12691/ijefm-11-1-1.
R. Buga et al., “Streamlit application and deep learning model for brain metastasis monitoring after gamma knife treatment,” Biomedicines, vol. 13, no. 2, p. 423, Feb. 2025, doi: 10.3390/biomedicines13020423.
D. Ekambaram and V. Ponnusamy, “Real-time monitoring and assessment of rehabilitation exercises for low back pain through interactive dashboard pose analysis using Streamlit—A pilot study,” Electronics, vol. 13, no. 18, p. 3782, Sep. 2024, doi: 10.3390/electronics13183782.
B. Iraqi, L. Benhiba, and M. A. J. Idrissi, “Data analytics in investment banks,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 5, 2021, doi: 10.14569/IJACSA.2021.0120562.
E. C. Wibowo and A. D. Cahyono, “Analisis perbandingan algoritma regresi linier dengan neural network untuk prediksi harga saham,” Jurnal Sistem Informasi, vol. 14, no. 4, pp. 1879–1896, 2025.
X. Li et al., “Evaluation of supervised machine learning regression models for CFD-based surrogate modelling in indoor airflow field reconstruction,” Building and Environment, vol. 267, p. 112173, Jan. 2025, doi: 10.1016/j.buildenv.2024.112173.
X. Wang, W. Wang, and S. Zhang, “Stock price return prediction based on multifactorial machine learning approaches,” in ICBBEM 2022, Atlantis Press, 2023, pp. 324–333, doi: 10.2991/978-94-6463-030-5_34.
C. N. C. Neba et al., “Comparative analysis of stock price prediction models: GLM, Ridge, Lasso, ElasticNet, and Random Forest—Case study on Netflix,” Oct. 2023, doi: 10.5281/zenodo.10040460.
F. F. Abdulloh et al., “Performance analysis of machine learning algorithms using the ensemble method on predicting the impact of inflation on Indonesia’s economic growth,” JOIV: International Journal on Informatics Visualization, vol. 8, no. 4, p. 2316, Dec. 2024, doi: 10.62527/joiv.8.4.2567.
T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not,” Geoscientific Model Development, vol. 15, no. 14, pp. 5481–5487, Jul. 2022, doi: 10.5194/gmd-15-5481-2022.
K. Abiodun et al., “Risk-sensitive financial dashboards with embedded machine learning: A user-centric approach to operational transparency,” International Journal of Scientific Research in Modern Technology, pp. 1–18, Feb. 2024, doi: 10.38124/ijsrmt.v3i2.678.
Y. Anisa, M. Hafiz, and N. Novita, “Pengembangan model prediksi harga saham dengan menggunakan regresi linear berganda pada saham BRI,” JISTech: Journal of Islamic Science and Technology, vol. 9, no. 2, p. 191, Dec. 2024, doi: 10.30829/jistech.v9i2.22213.
C. K. Bal and R. K. Mishra, “Stock market analysis and prediction: A bibliometric analysis,” Journal of Scientometric Research, vol. 14, no. 1, pp. 221–238, Mar. 2025, doi: 10.5530/jscires.20251277.
L. Pratt, C. Bisson, and T. Warin, “Bringing advanced technology to strategic decision-making: The DI/DS integration framework,” Futures, vol. 152, p. 103217, Sep. 2023, doi: 10.1016/j.futures.2023.103217.
M. Du, R. Amor, K.-L. Ma, and B. C. Wünsche, “Data visualization for improving financial literacy: A systematic review,” Visual Informatics, p. 100272, Sep. 2025, doi: 10.1016/j.visinf.2025.100272.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Sistem Komputer dan Informatika (JSON)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

