Deteksi Dini Penyakit Tanaman Jagung Berbasis Transfer Learning dengan Arsitektur DenseNet121

Authors

  • Dani Rofianto Politeknik Negeri Lampung
  • Rima Maulini Politeknik Negeri Lampung
  • Dwirgo Sahlinal Politeknik Negeri Lampung
  • Dian Meilantika Politeknik Negeri Lampung
  • Tri Pujiana Politeknik Negeri Lampung

DOI:

https://doi.org/10.30865/json.v7i2.9094

Keywords:

Transfer learning; DenseNet121; Klasifikasi citra; Penyakit daun jagung; Pertanian presisi

Abstract

Jagung (Zea mays L.) merupakan komoditas pangan strategis di Indonesia yang berperan penting dalam ketahanan pangan, industri pakan ternak, hingga energi terbarukan. Produktivitas jagung kerap menurun akibat penyakit daun seperti Blight, Common Rust, dan Gray Leaf Spot, yang dapat mengurangi hasil panen hingga 30–50% jika tidak dideteksi sejak dini. Metode deteksi konvensional melalui pengamatan visual masih memiliki keterbatasan, antara lain subjektivitas penilaian, kurangnya tenaga ahli, serta keterlambatan dalam pengambilan keputusan. Oleh karena itu, diperlukan pendekatan berbasis kecerdasan buatan yang mampu melakukan deteksi secara cepat, akurat, dan efisien di lapangan. Penelitian ini mengusulkan penggunaan transfer learning dengan arsitektur DenseNet121 untuk klasifikasi penyakit daun jagung. Dataset yang digunakan terdiri dari 2.818 citra yang terbagi ke dalam empat kelas utama (Blight, Common Rust, Gray Leaf Spot, Healthy), diperoleh dari kombinasi dokumentasi lapangan dan dataset terbuka daring. Data kemudian dibagi menggunakan stratified split menjadi 68% latih, 17% validasi, dan 15% uji. Hasil pengujian menunjukkan bahwa model mencapai akurasi 93,48% dengan F1-score rata-rata 0,93. Kelas Healthy dan Common Rust teridentifikasi hampir sempurna, sementara kesalahan klasifikasi masih ditemukan pada Gray Leaf Spot yang sering terprediksi sebagai Blight. Kurva akurasi dan loss memperlihatkan dinamika pelatihan yang stabil tanpa indikasi overfitting, berkat penerapan augmentasi data, dropout, dan early stopping. Temuan ini menegaskan bahwa DenseNet121 berpotensi besar untuk diterapkan dalam sistem deteksi dini penyakit jagung berbasis AI, sekaligus mendukung pengembangan pertanian presisi dan peningkatan produktivitas nasional.

Author Biographies

Rima Maulini, Politeknik Negeri Lampung

Manajemen Informatika

Dwirgo Sahlinal, Politeknik Negeri Lampung

Manajemen Informatika

Dian Meilantika, Politeknik Negeri Lampung

Manajemen Informatika

Tri Pujiana, Politeknik Negeri Lampung

Tanaman Pangan

References

E. Y. Tarigan, Widihastuty, and A. F. Ahmad Sayu, “Effectiveness of Corn (Zea mays ssp L. var. Saccharata) Seed Harvesting Speed Using a Mini Combine Harvester in Corn Seed Production,” JURNAL AGRONOMI TANAMAN TROPIKA (JUATIKA), vol. 7, no. 1, Jan. 2025, doi: 10.36378/juatika.v7i1.3991.

S. R. B. Siregar and M. S. Sari, “Identification Of Disease And Pathogen Attack Levels On Corn (Zea mays) IN BPP Stabat,” Serambi Journal of Agricultural Technology, vol. 3, no. 2, 2021.

A. Nampira and A. Mariam, “AI-Assisted Early Detection of Crop Disease Using Hyperspectral Imaging and Deep Learning in Smallholder Farms,” Journal of Multidisciplinary Sustainability Asean, vol. 2, no. 3, pp. 109–119, 2025, doi: 10.70177/ijmsa.v2i3.2305.

L. Cunha, “Deep learning with Python (2a ed) - François Chollet - Manning, outubro 2021, 504 pp.,” Interações: Sociedade e as novas modernidades, no. 42, pp. 113–115, Jun. 2022, doi: 10.31211/interacoes.n42.2022.r1.

J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genet Program Evolvable Mach, vol. 19, no. 1–2, pp. 305–307, Jun. 2018, doi: 10.1007/s10710-017-9314-z.

E. Elbasi et al., “Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review,” 2023. doi: 10.1109/ACCESS.2022.3232485.

M. Gao, J. A. Fessler, and H. P. Chan, “Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach,” Phys Med Biol, vol. 68, no. 24, 2023, doi: 10.1088/1361-6560/ad0eb4.

J. O. N. V. Geronimo, E. D. L. R. Arguelles, and K. J. M. Abriol-Santos, “Automated Classification and Identification System for Freshwater Algae Using Convolutional Neural Networks,” Philipp J Sci, vol. 152, no. 1, 2023, doi: 10.56899/152.01.25.

M. G. Lanjewar, P. Morajkar, and P. P, “Modified transfer learning frameworks to identify potato leaf diseases,” Multimed Tools Appl, vol. 83, no. 17, 2024, doi: 10.1007/s11042-023-17610-0.

J. Liang, Y. Deng, and D. Zeng, “A Deep Neural Network Combined CNN and GCN for Remote Sensing Scene Classification,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, 2020, doi: 10.1109/JSTARS.2020.3011333.

H. Zhao and Y. Wang, “A Big Data-Driven Financial Auditing Method Using Convolution Neural Network,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3269438.

S. Panigrahi, A. Nanda, and T. Swarnkar, “A Survey on Transfer Learning,” in Smart Innovation, Systems and Technologies, 2021. doi: 10.1007/978-981-15-5971-6_83.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018. doi: 10.1007/978-3-030-01424-7_27.

W. G. Pamungkas, M. I. P. Wardhana, Z. Sari, and Y. Azhar, “Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classified Corn Disease,” Jurnal RESTI, vol. 7, no. 2, 2023, doi: 10.29207/resti.v7i2.4736.

S. H. Lee, H. Goëau, P. Bonnet, and A. Joly, “New perspectives on plant disease characterization based on deep learning,” Comput Electron Agric, vol. 170, 2020, doi: 10.1016/j.compag.2020.105220.

M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification,” Artificial Intelligence in Agriculture, vol. 9, 2023, doi: 10.1016/j.aiia.2023.07.001.

A. Usha Ruby, J. George Chellin Chandran, B. N. Chaithanya, T. J. Swasthika Jain, and R. Patil, “Wheat leaf disease classification using modified ResNet50 convolutional neural network model,” Multimed Tools Appl, vol. 83, no. 23, 2024, doi: 10.1007/s11042-023-18049-z.

S. Leng, Y. Musha, Y. Yang, and G. Feng, “CEMLB-YOLO: Efficient Detection Model of Maize Leaf Blight in Complex Field Environments,” Applied Sciences (Switzerland), vol. 13, no. 16, 2023, doi: 10.3390/app13169285.

R. M. Shiny, A. Gladston, and H. Khanna Nehemiah, “A Multi-kernel CNN model with attention mechanism for classification of citrus plants diseases,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-08557-3.

S. Jia, G. Wang, H. Li, Y. Liu, L. Shi, and S. Yang, “ConvTransNet-S: A CNN-Transformer Hybrid Disease Recognition Model for Complex Field Environments,” Plants, vol. 14, no. 15, Aug. 2025, doi: 10.3390/plants14152252.

Y. Sun, L. Ning, B. Zhao, and J. Yan, “Tomato Leaf Disease Classification by Combining EfficientNetv2 and a Swin Transformer,” Applied Sciences (Switzerland), vol. 14, no. 17, Sep. 2024, doi: 10.3390/app14177472.

M. Ahmad, “Cotton Leaf Disease Detection Using Vision Transformers: A Deep Learning Approach,” African Journal of Biomedical Research, pp. 5760–5769, Nov. 2024, doi: 10.53555/ajbr.v27i3s.3421.

Downloads

Published

2025-12-31

How to Cite

Rofianto, D., Maulini, R., Sahlinal, D., Meilantika, D., & Pujiana, T. (2025). Deteksi Dini Penyakit Tanaman Jagung Berbasis Transfer Learning dengan Arsitektur DenseNet121. Jurnal Sistem Komputer Dan Informatika (JSON), 7(2), 559–567. https://doi.org/10.30865/json.v7i2.9094