Identifikasi Faktor Risiko Serangan Jantung di Indonesia Menggunakan Model Prediktif LightGBM
DOI:
https://doi.org/10.30865/json.v7i2.9065Keywords:
Serangan Jantung; LightGBM; PCA; SMOTE; AUC-ROCAbstract
Peningkatan prevalensi serangan jantung di Indonesia telah menjadi isu kesehatan publik yang signifikan karena penyakit ini konsisten termasuk penyebab kematian tertinggi secara nasional. Meskipun berbagai studi epidemiologis telah mengidentifikasi faktor risiko klinis maupun perilaku, pendekatan berbasis data untuk prediksi individual masih relatif terbatas, terutama pada konteks populasi Indonesia dengan karakteristik heterogen. Untuk menjawab kesenjangan tersebut, penelitian ini mengembangkan model prediktif serangan jantung menggunakan algoritma Light Gradient Boosting Machine (LightGBM) yang dikenal efisien pada data berukuran besar. Dataset terdiri dari 158.355 observasi dan 28 fitur demografis, gaya hidup, dan indikator medis. Prosedur prapemrosesan mencakup imputasi nilai hilang, pengkodean variabel kategorikal, seleksi fitur menggunakan Principal Component Analysis (PCA), serta penyeimbangan distribusi kelas melalui Synthetic Minority Over-Sampling Technique (SMOTE). Kinerja prediksi dievaluasi menggunakan metrik klasifikasi standar, di mana LightGBM mencapai akurasi 83,39% (train) dan 77,92% (test); presisi 85,67% dan 79,38%; recall 80,19% dan 75,44%; F1-score 82,84% dan 77,36%; serta AUC-ROC 91,84% dan 87,37%. Analisis komponen utama menunjukkan kontribusi varians yang tinggi pada fitur terkait pola konsumsi, penggunaan obat, stres, dan hipertensi. Hasil ini mengindikasikan bahwa LightGBM merupakan pendekatan yang menjanjikan untuk mendukung deteksi risiko serangan jantung secara lebih awal dan berpotensi meningkatkan strategi mitigasi penyakit kardiovaskular di Indonesia.
References
E. F. Laili, Z. Alawi, R. Rohmah, and M. A. Barata, “komparasi algoritma decision tree dan support vector machine (svm) dalam klasifikasi serangan jantung,” J. Sist. Inf. Dan Inform. Simika, vol. 8, no. 1, pp. 67–76, Jan. 2025, doi: 10.47080/simika.v8i1.3683.
M. A. Sembiring, “analisis faktor prediksi diagnosa tingkat serangan jantung menggunakan metode regression,” J. Tek., vol. 4, no. 1, p. 16, Feb. 2024, doi: 10.54314/teknisi.v4i1.1800.
H. Yang, Z. Chen, H. Yang, and M. Tian, “Predicting Coronary Heart Disease Using an Improved LightGBM Model: Performance Analysis and Comparison,” IEEE Access, vol. 11, pp. 23366–23380, 2023, doi: 10.1109/ACCESS.2023.3253885.
N. Nandal, L. Goel, and R. Tanwar, “Machine learning-based heart attack prediction: A symptomatic heart attack prediction method and exploratory analysis,” F1000Research, vol. 11, p. 1126, Sep. 2022, doi: 10.12688/f1000research.123776.1.
Y. Xue et al., “The Prediction Models for High-Risk Population of Stroke Based on Logistic Regressive Analysis and Lightgbm Algorithm Separately,” Iran. J. Public Health, May 2022, doi: 10.18502/ijph.v51i5.9415.
D. Dablain, B. Krawczyk, and N. V. Chawla, “DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 9, pp. 6390–6404, Sep. 2023, doi: 10.1109/TNNLS.2021.3136503.
T. Md. N. U. Akhund and W. M. Al-Nuwaiser, “Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization,” Comput. Mater. Contin., vol. 80, no. 3, pp. 3485–3506, 2024, doi: 10.32604/cmc.2024.054222.
M. H. Al-Adhaileh, M. I. Ahmed Al-mashhadani, E. M. Alzahrani, and T. H. H. Aldhyani, “Improving Heart Attack Prediction Accuracy Performance Using Machine Learning and Deep Learning Algorithms,” Iraqi J. Comput. Sci. Math., vol. 6, no. 2, Apr. 2025, doi: 10.52866/2788-7421.1239.
T. O. Omotehinwa, D. O. Oyewola, and E. G. Moung, “Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease,” Inform. Health, vol. 1, no. 2, pp. 70–81, Sep. 2024, doi: 10.1016/j.infoh.2024.06.001.
A. L. G. Vicente, R. D. M. Junior, and R. A. F. Romero, “Explainable LightGBM Approach for Predicting Myocardial Infarction Mortality,” Apr. 23, 2024, arXiv: arXiv:2404.15029. doi: 10.48550/arXiv.2404.15029.
R. Han, R. Meng, and Q. Zhu, “Predictive Analytics in Heart Disease: Leveraging LightGBM for Improved Diagnostic Accuracy”.
J. Miah, D. M. Ca, M. A. Sayed, E. R. Lipu, F. Mahmud, and S. M. Y. Arafat, “Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction,” in 2023 15th International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates: IEEE, Nov. 2023, pp. 49–54. doi: 10.1109/IIT59782.2023.10366476.
X. Ji et al., “Prediction Model of Hypertension Complications Based on GBDT and LightGBM,” J. Phys. Conf. Ser., vol. 1813, no. 1, p. 012008, Feb. 2021, doi: 10.1088/1742-6596/1813/1/012008.
S. Rao et al., “An explainable Transformer-based deep learning model for the prediction of incident heart failure”.
[N. M. K. Ramalingamsakthivelan, V. Silambarasan, S. Thavasi, and P. V. Shankar, “Heart Disease Risk Assessment by Using LightGBM Technique,” vol. 5, no. 2, 2023.
N. A. Baghdadi, S. M. Farghaly Abdelaliem, A. Malki, I. Gad, A. Ewis, and E. Atlam, “Advanced machine learning techniques for cardiovascular disease early detection and diagnosis,” J. Big Data, vol. 10, no. 1, p. 144, Sep. 2023, doi: 10.1186/s40537-023-00817-1.
M. A. Siddiqi and W. Pak, “Optimizing Filter-Based Feature Selection Method Flow for Intrusion Detection System,” Electronics, vol. 9, no. 12, p. 2114, Dec. 2020, doi: 10.3390/electronics9122114.
S. Zhang, Y. Yuan, Z. Yao, J. Yang, X. Wang, and J. Tian, “Coronary Artery Disease Detection Model Based on Class Balancing Methods and LightGBM Algorithm,” Electronics, vol. 11, no. 9, p. 1495, May 2022, doi: 10.3390/electronics11091495.
M. Salmi, D. Atif, D. Oliva, A. Abraham, and S. Ventura, “Handling imbalanced medical datasets: review of a decade of research,” Artif. Intell. Rev., vol. 57, no. 10, p. 273, Sep. 2024, doi: 10.1007/s10462-024-10884-2.
A. Akshay, M. Katoch, N. Shekarchizadeh, and M. Abedi, “Machine Learning Made Easy (MLme): A Comprehensive Toolkit for Machine Learning-Driven Data Analysis”.
Y. Wang and T. Wang, “Application of Improved LightGBM Model in Blood Glucose Prediction,” Appl. Sci., vol. 10, no. 9, p. 3227, May 2020, doi: 10.3390/app10093227.
L. Sari, A. Romadloni, R. Lityaningrum, and H. D. Hastuti, “Implementation of LightGBM and Random Forest in Potential Customer Classification,” TIERS Inf. Technol. J., vol. 4, no. 1, pp. 43–55, Jun. 2023, doi: 10.38043/tiers.v4i1.4355.
C. G. L. Pringandana, “A Comparative Analysis of Hyperparameter-Tuned XGBoost and LightGBM for Multiclass Rainfall Classification in Jakarta,” vol. 6, no. 4, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Sistem Komputer dan Informatika (JSON)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

