Implementasi Metode Naive Bayes Classifier dalam Menentukan Diagnosa Kerusakan pada Smartphone

Authors

  • Adam Perdana Septyana Universitas Widyatama
  • Esa Fauzi Universitas Widyatama

DOI:

https://doi.org/10.30865/json.v7i1.8926

Keywords:

, Kerusakan Smartphone, Machine Learning, Naive Bayes, Sistem Diagnosa, Prediksi Kerusakan, Probabilitas kerusakan

Abstract

Kerusakan pada smartphone merupakan permasalahan umum yang sering dialami oleh pengguna, namun tidak semua pengguna memahami solusi yang tepat atas permasalahan tersebut. Oleh karena itu, dibutuhkan suatu sistem yang dapat membantu dalam mendiagnosa kerusakan smartphone secara cepat dan akurat. Teknologi machine learning dapat dimanfaatkan untuk membantu teknisi dalam proses diagnosis dengan menggunakan metode Naive Bayes Classifier. Metode ini menggunakan empat atribut utama dalam menentukan probabilitas kerusakan, yaitu kronologi, merek smartphone, konsumsi arus listrik, dan gejala. Naive Bayes dipilih karena kesederhanaannya, kemampuannya dalam menangani data yang tidak seimbang, serta kinerjanya yang baik dalam klasifikasi. Data gejala dan jenis kerusakan diperoleh dari teknisi smartphone dan literatur relevan. Sistem ini diharapkan dapat menjadi alat bantu bagi pengguna maupun teknisi dalam melakukan identifikasi awal terhadap kerusakan smartphone secara lebih efisien dan akurat.

References

“Gartner Says Worldwide Smartphone Sales Grew 26% in First Quarter of 2021,” *Gartner*. Jun, 7, 2021, [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/2021-06-07-1q21-smartphone-market-share, Accessed: May 5, 2025.

M. T. Ismail, M. S. Ab Rahman, and A. H. Abdullah, “A Study of Smartphone Component Failure: Hardware and Software Perspective,” *J. Eng. Sci. Technol.*, vol. 16, no. 3, pp. 2205–2217, 2021.

K. Thakur and A. Soni, “A Survey on Causes and Diagnosis of Smartphone Failures,” *Int. J. Comput. Appl.*, vol. 182, no. 17, pp. 14–18, 2020.

S. Patel and P. Jain, “Performance Comparison of Naive Bayes and Other Machine Learning Algorithms for Predicting Smartphone Faults,” in *Proc. Int. Conf. Comput. Commun. Inf. Technol. (CCICT)*, 2022, pp. 89–94.

M. R. Rani and A. G. Ramakrishnan, “Comparative Analysis of Machine Learning Models for Mobile Fault Classification,” *Appl. Comput. Intell. Soft Comput.*, vol. 2020, Article ID 8912604, 2020.

X. Zhang and L. Wang, “Bayesian Learning Approaches for Mobile Device Fault Detection,” *IEEE Access*, vol. 9, pp. 119670–119681, 2021.

F. Zhang, Y. Gao, and Q. Li, “A Naive Bayes Model for Activity Recognition Using Mobile Phone Data,” *Sensors*, vol. 20, no. 2, p. 556, 2020.

H. Lee and J. Kim, “Health Monitoring via Smartphone Sensors: A Naive Bayes-Based Model,” *IEEE J. Biomed. Health Inform.*, vol. 25, no. 8, pp. 2892–2900, Aug. 2021.

S. Sharma and M. Kaur, “Threat Detection in Smart Devices Using Sensor Fusion and Naive Bayes Classifier,” *Comput. Electr. Eng.*, vol. 90, p. 106987, 2021.

Y. Nugroho and F. A. Aziz, “Data-driven Repair Strategy for Smartphones: An Empirical Study,” *Indones. J. Electr. Eng. Comput. Sci.*, vol. 21, no. 3, pp. 1623–1630, 2021.

R. P. Das and S. Kar, “Diagnosis of Mobile Faults Using ML Techniques: A Naive Bayes Approach,” in *Proc. IEEE Int. Conf. Smart Technol. (SMARTTECH)*, 2022, pp. 82–86.

A. Setiawan and R. Anindita, “Naive Bayes Implementation in Mobile Device Repair Decision Support System,” *J. Inf. Syst. Eng. Bus. Intell.*, vol. 7, no. 2, pp. 91–99, 2022.

D. Xu and W. Yang, “AI-Based Decision Support System for Mobile Service Centers,” *Int. J. Inf. Technol. Decis. Mak.*, vol. 20, no. 5, pp. 1315–1330, 2021.

N. W. Kusumadewi, “User Satisfaction and Technician Productivity through ML-based Diagnosis Systems,” *TELKOMNIKA Telecommun. Comput. Electron. Control*, vol. 18, no. 4, pp. 2050–2057, 2020.

J. A. Fitriani and H. Pratama, “Educational Tools Based on Predictive Models for Smartphone Repair Training,” *J. Theor. Appl. Inf. Technol.*, vol. 99, no. 8, pp. 1781–1789, 2021.

A. H. Hadi and M. R. Fadli, “Fault Detection System in Smartphones Using Naive Bayes,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 11, no. 5, pp. 342–347, 2020.

B. Prasetyo, D. H. Wijaya, and F. R. Azhari, “Automatic Smartphone Repair Diagnosis Using Probabilistic Classification,” *J. Phys.: Conf. Ser.*, vol. 1823, p. 012016, 2021.

S. D. Siregar, “Predictive Maintenance in Smartphones Using Machine Learning,” *Procedia Comput. Sci.*, vol. 179, pp. 510–516, 2021.

L. Yuliana and T. Kurniawan, “Naive Bayes-Based Application for Smartphone Damage Detection,” *J. Inf. Technol. Comput. Sci.*, vol. 7, no. 2, pp. 89–97, 2022.

R. Zulfikar and M. A. Hafidz, “Smartphone Failure Prediction Using Bayesian Classification,” *Int. J. Eng. Technol. Innov.*, vol. 13, no. 1, pp. 44–51, 2023

Downloads

Published

2025-09-08

How to Cite

Septyana, A. P., & Esa Fauzi. (2025). Implementasi Metode Naive Bayes Classifier dalam Menentukan Diagnosa Kerusakan pada Smartphone . Jurnal Sistem Komputer Dan Informatika (JSON), 7(1), 86–93. https://doi.org/10.30865/json.v7i1.8926