Heart Disease Classification Based on Medical Record Data Using the Logistic Regression Method

Authors

  • Syahyana Iswari Universitas Malikussaleh
  • Rozzi Kesuma Dinata Universitas Malikussaleh
  • Hafizh Al Kautsar Aidilof Universitas Malikussaleh

DOI:

https://doi.org/10.30865/json.v7i1.8867

Keywords:

Data Mining, Classification, Logistic Regression, Disease.

Abstract

Heart disease remains one of the primary causes of mortality globally and poses a significant public health concern, including in Indonesia. Early identification of individuals at risk is essential for lowering death rates and enhancing the success of medical interventions. This research focuses on developing a classification model for heart disease using the Logistic Regression technique, utilizing data extracted from patient medical records. The dataset comprises 100 entries, each containing six key features: age, gender, blood pressure, heart rate, respiratory rate, and chest pain. The model was trained on 80% of the data and evaluated using the remaining 20%. Model performance was assessed using several metrics, including accuracy, precision, recall (sensitivity), F1-score, confusion matrix, and the ROC (Receiver Operating Characteristic) curve. The evaluation results revealed an accuracy of 95%, precision of 100%, recall of 88.89%, F1-score of 94.12%, and an AUC score of 0.99. These outcomes suggest that Logistic Regression is highly effective for classifying heart disease risk and can serve as a valuable tool in early detection systems supported by medical record data.

References

L. Britanthia, C. Tanujaya, B. Susanto, and A. Saragih, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Fitur Mode Audio Spotify,” Indonesian Journal of Data and Science (IJODAS), vol. 1, no. 3, pp. 68–78, 2020.

Y. Anugerah, D. Khurrota A’yunan, S. Busono, F. Sains, and D. Teknologi, “IMPLEMENTASI DATA MINING DALAM KLASIFIKASI DIAGNOSA KANKER PAYUDARA MENGGUNAKAN ALGORITMA LOGISTIC REGRESSION,” Jurnal TEKINKOM, vol. 6, no. 2, p. 2023, 2023, doi: 10.37600/tekinkom.v6i2.948.

H. Al Kautsar Aidilof and W. Kurniawan, “KLASIFIKASI BERITA OLAHRAGA PADA PORTAL BERITA ONLINE DENGAN METODE K-NEAREST NEIGHBOUR (KNN) DAN LEVENSHTEIN DISTANCE,” 2021. Accessed: Jul. 15, 2025. [Online]. Available: https://doi.org/10.29103/tts.v2i1.3760

R. K. Dinata, H. Akbar, and N. Hasdyna, “Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 104–111, Aug. 2020, doi: 10.33096/ilkom.v12i2.539.104-111.

M. Arhami and M. Nasir, “Data_Mining_Algoritma_dan_Implementasi,” Data Mining - Algoritma dan Implementasi, 2020.

J. Junifer Pangaribuan and H. Tanjaya, “MENDETEKSI PENYAKIT JANTUNG MENGGUNAKAN MACHINE LEARNING DENGAN ALGORITMA LOGISTIC REGRESSION,” 2021.

A. Harisa, P. Wulandari, S. Ningrat, and Y. Yodang, “Pengaruh Terapi Murottal Terhadap Depresi Pada Pasien Congestive Heart Failure Di Pusat Jantung Terpadu RSUP Dr. Wahidin Sudirohusodo,” Dunia Keperawatan: Jurnal Keperawatan dan Kesehatan, vol. 8, no. 2, p. 269, Aug. 2020, doi: 10.20527/dk.v8i2.8324.

S. Muharni and S. Andriyanto, “Sistem Diagnosa Penyakit Jantung Berbasis Case Based Reasoning (CBR),” 2021, Accessed: Feb. 23, 2025. [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2910/1233

M. Program Studi Ilmu Keperawatan, S. Citra Delima Bangka Belitung, J. I. Pinus, K. Pedang, P. Pinang, and K. Bangka Belitung, “DUKUNGAN KELUARGA BERHUBUNGAN DENGAN KUALITAS HIDUP PASIEN GAGAL JANTUNG,” 2023. [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP

K. Klasifikasi Metode Regresi Logistik dan Metode Chaid dengan Pembobotan Sampel Puspa Juwita and P. Hendikawati, “Ketepatan Klasifikasi Metode Regresi Logistik dan Metode Chaid dengan Pembobotan Sampel,” 2021. [Online]. Available: http://journal.unnes.ac.id/nju/index.php/JM

R. Ibnas and B. Agung Kurniawan, “Klasifikasi Penderita Anemia Menggunakan Metode Regresi Logistik,” 2024. Accessed: Feb. 23, 2025. [Online]. Available: https://journal3.uin-alauddin.ac.id/index.php/msa/article/view/45083

G. Rohma, U. Asyafiiyah, and R. M. Akbar, “METODE LOGISTIC REGRESSION PREDICTION OF PATIENTS INDICATED WITH HEART DISEASE USING LOGISTIC REGRESSION METHOD,” vol. 4, no. 1, pp. 19–23, 2024, [Online]. Available: http://ejurnal.unim.ac.id/index.php/submit

Z. Mutaqin, C. Rozikin, and Y. A. Tomo, “KLASIFIKASI PENYAKIT DIABETES MENGGUNAKAN ALGORITMA LOGISTIC REGRESSION,” 2024. [Online]. Available: https://journalpedia.com/1/index.php/jsti

A. Z. Hafizhah, S. Suakanto, R. Y. Fa’rifah, and E. T. Nuryatno, “Klasifikasi Laju Pernapasan dan Saturasi Oksigen Menggunakan Regresi Logistik,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 2, pp. 448–458, May 2023, doi: 10.29100/jipi.v8i2.3481.

M. Purba, F. Ilmu Komputer, and U. Sjakhyakirti, “Klasifikasi Dataset Teks Pengaduan Masyarakat Terhadap Pemerintah di Sosial Media Menggunakan Logistic Regression Article Info ABSTRAK,” JSAI: Journal Scientific and Applied Informatics, vol. 7, no. 1, p. 5, 2024, doi: 10.36085.

Amrin, Rudianto, and Sismadi, “JITE (Journal of Informatics and Telecommunication Engineering) Data Mining with Logistic Regression and Support Vector Machine for Hepatitis Disease Diagnosis,” JITE, vol. 8, no. 2, 2025, doi: 10.31289/jite.v8i2.13218.

M. Fahmuddin, M. K. Aidid, and M. J. Taslim, “IMPLEMENTASI ANALISIS REGRESI LOGISTIK DENGAN METODE MACHINE LEARNING UNTUK MENGKLASIFIKASI BERITA DI INDONESIA,” VARIANSI: Journal of Statistics and Its Application on Teaching and Research, vol. 5, no. 03, pp. 155–162, 2023, doi: 10.35580/variansiunm116.

R. Susetyoko, W. Yuwono, and E. Purwantini, “JIP (Jurnal Informatika Polinema) Model Klasifikasi Pada Seleksi Mahasiswa Baru Penerima KIP Kuliah Menggunakan Regresi Logistik Biner”.

N. P. Setiawati, B. A. Nugroho, A. T. Setiawan, and D. Hartanti, “Data Mining Untuk Klasifikasi Diagnosis Tingkat Keparahan Penyakit Diabetes Dengan Algoritma Logistik Regresi,” 2023. Accessed: Feb. 23, 2025. [Online]. Available: https://ojs.udb.ac.id/index.php/Senatib/article/view/3254

Downloads

Published

2025-09-08

How to Cite

Iswari, S., Dinata, R. K., & Aidilof, H. A. K. (2025). Heart Disease Classification Based on Medical Record Data Using the Logistic Regression Method. Jurnal Sistem Komputer Dan Informatika (JSON), 7(1), 33–41. https://doi.org/10.30865/json.v7i1.8867