Deteksi Kelainan Jantung Berdasarkan Sinyal EKG Menggunakan Deep Neural Network
DOI:
https://doi.org/10.30865/json.v6i4.8662Keywords:
Deep Neural Network, Sinyal EKG, Deteksi Kelainan Jantung, Klasifikasi, Deep LearningAbstract
Penyakit jantung merupakan salah satu penyebab utama kematian di dunia, termasuk di Indonesia. Deteksi dini kelainan jantung melalui sinyal elektrokardiogram (EKG) sangat penting, namun interpretasi manual oleh tenaga medis sering kali memerlukan keahlian khusus dan rentan terhadap kesalahan. Penelitian ini bertujuan untuk mengembangkan sistem deteksi otomatis kelainan jantung menggunakan metode Deep Neural Network (DNN) berdasarkan sinyal EKG. Dataset yang digunakan berasal dari PTB Diagnostic ECG Database (PTBDB) yang diperoleh dari Kaggle, dengan dua kategori data: normal dan abnormal. Data diproses melalui tahap balancing, normalisasi, dan pembagian menjadi data latih dan uji. Model DNN dilatih menggunakan data terstruktur berdurasi pendek dengan 187 fitur, dan dievaluasi menggunakan metrik akurasi, precision, recall, f1-score, ROC, serta Precision-Recall Curve. Hasil pelatihan menunjukkan bahwa model mampu mencapai akurasi validasi sebesar 95% dan nilai AUC sebesar 0,98, yang mengindikasikan kemampuan klasifikasi yang sangat baik. Dengan performa tersebut, model ini memiliki potensi besar untuk diterapkan dalam sistem pendukung diagnosis medis secara real-time, terutama untuk membantu deteksi dini gangguan jantung secara efisien dan akurat
References
L. Farida Tampubolon, A. Ginting, F. Ermasta Saragi Turnip, Stik. Santa Elisabeth Medan, J. Bunga Terompet No, and K. Medan Selayang, “GAMBARAN FAKTOR YANG MEMPENGARUHI KEJADIAN PENYAKIT JANTUNG KORONER (PJK) DI PUSAT JANTUNG TERPADU (PJT),” 2023. [Online]. Available: http://journal.stikeskendal.ac.id/index.php/PSKM
M. Fajar and Z. Nugraha, “Deteksi Aritmia Menggunakan Algoritma Deep Neural Network (Dnn) Pada Sinyal Elektrokardiogram,” 2023.
T. Mahmud et al., “Ensemble Deep Learning Approach for ECG-Based Cardiac Disease Detection: Signal and Image Analysis,” in 2023 International Conference on Information and Communication Technology for Sustainable Development, ICICT4SD 2023 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 70–74. doi: 10.1109/ICICT4SD59951.2023.10303625.
E. M. Marwali, Y. Purnama, P. S. Roebiono, K.?: Eva, M. Marwali, and T. Pustaka, “Modalitas Deteksi Dini Penyakit Jantung Bawaan di Pelayanan Kesehatan Primer,” 2021.
N. Alexandra Yosephine, “Penggunaan Artificial Neural Network pada Sinyal Elektrokardiogram untuk Mendeteksi Penyakit Jantung Aritmia Supraventrikular,” 2021.
A. Riset, J. Raihanah Arkam, K. Wisudawan, A. Sitti Fahirah Arsal, and F. Sommeng, “FAKUMI MEDICAL JOURNAL Hubungan Faktor Resiko Penyakit Jantung terhadap Hasil Elektrokardiografi (EKG) pada Perawat UGD RS. Ibnu Sina,” 2023.
W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K. R. Müller, “Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, Mar. 2021, doi: 10.1109/JPROC.2021.3060483.
Y. Julia Nurriski, “Optimasi Deep Convolutional Neural Network (Deep CNN) untuk Deteksi Aritmia Melalui Sinyal EKG Menggunakan Arsitektur Conv1D,” 2023. [Online]. Available: http://journal.unnes.ac.id/nju/index.php/JM
R. N. P. P. Irpanudin. Reka. Anggraeni, “PREDIKSI PENYAKIT JANTUNG MENGGUNAKAN METODE DEEP NEURAL NETWORK DENGAN MEMANFAATKAN INTERNET OF THINGS,” 2023.
A. Ç?nar and S. A. Tuncer, “Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks,” Comput Methods Biomech Biomed Engin, vol. 24, no. 2, pp. 203–214, 2021, doi: 10.1080/10255842.2020.1821192.
T. R. Setyawan, T. K. Wibowo, A. Hidayatno, and E. Handoyo, “PERANCANGAN ALAT DETEKSI KELAINAN JANTUNG DENGAN ANALISIS HASIL EKG BERBASIS MACHINE LEARNING,” 2024. [Online]. Available: https://ejournal3.undip.ac.id/index.php/transient
K. Wickstrøm, M. Kampffmeyer, and R. Jenssen, “Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps,” Med Image Anal, vol. 60, Feb. 2020, doi: 10.1016/j.media.2019.101619.
A. H. Khan, M. Hussain, and M. K. Malik, “Cardiac disorder classification by electrocardiogram sensing using deep neural network,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/5512243.
S. E. M. E. S. S. B. P. A. D. Praptinasari, “Sistem Deteksi Kelainan Jantung Berdasarkan Elektrokardiograf Secara Otomatis,” Journal of Electrical Electronic Control and Automotive Engineering (JEECAE), vol. 7, no. 1, 2022.
M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heart conditions based on characteristics of ECG signals,” Measurement (Lond), vol. 125, pp. 634–644, Sep. 2018, doi: 10.1016/j.measurement.2018.05.033.
H. Pham, K. Egorov, A. Kazakov, and S. Budennyy, “Machine learning-based detection of cardiovascular disease using ECG signals: performance vs. complexity,” Front Cardiovasc Med, vol. 10, 2023, doi: 10.3389/fcvm.2023.1229743.
I. J. S, M. M, and S. K. K, “Detection and Classification of electrocardiography using hybrid deep learning models,” Hellenic Journal of Cardiology, Jan. 2024, doi: 10.1016/j.hjc.2024.08.011.
D. R. Giri, K. S. V. Ram, K. Vijendra, G. D. Babu, and D. D. S. Ganesh, “Detection of Cardiovascular Diseases through ECG Images,” International Journal of Innovative Research in Computer Science and Technology, vol. 13, no. 2, pp. 72–78, Apr. 2025, doi: 10.55524/ijircst.2025.13.2.11.
A. Gour, M. Gupta, R. Wadhvani, and S. Shukla, “ECG Based Heart Disease Classification: Advancement and Review of Techniques,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 1634–1648. doi: 10.1016/j.procs.2024.04.155.
S. Ahmed, A. Hilal-Alnaqbi, M. Al Hemairy, and M. Al Ahmad, “ECG Abnormality Detection Algorithm,” 2018. [Online]. Available: www.ijacsa.thesai.org
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michael Robert,Yennimar,Andy Wyjaya,, Steven Ebert,Mhd. Ali Ramadhan

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

