Analisis Sentimen Ulasan Pengguna Game Pubg Di Google Play Store Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.30865/json.v5i3.7264Keywords:
Sentiment Analysis, PUBG, Algoritma Naive Bayes, Confusion Matrix, Play StoreAbstract
In today's digital era, technological development is very rapid and sophisticated. The online gaming industry has also evolved. Online games are a variant of video games that are played online via the internet. When users connect with other users, users can interact and work together. Battle rolaye games, such as Player Unknown's Battlegrounds (PUBG) have become one of the most popular of the many online games available. PUBG games offer a large-scale gaming experience that creates a dynamic gaming experience. One of the advantages of the PUBG game is that it has an attractive visual design and high quality graphics so that the game feels more realistic. However, this cannot guarantee satisfaction for users. To find out user sentiment towards the PUBG game, sentiment analysis using the Naïve Bayes Algorithm is carried out which aims to find out how accurate the Naïve Bayes Algorithm is used in classification. Data is taken using web scrapping techniques as many as 1000 user reviews in the Google Play Store review column. After going through preprocessing, the data is divided into 50% training data and 50% testing data. Prediction results tend to be positive with 578 positive sentiments and 232 negative sentiments. Based on evaluation using confusion matrix, the results are 83.95% for accuracy, 88.10% for precision, and 89.62% for recall.
References
A. Nurian and B. Nurina Sari, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,†JITET (Jurnal Informatika dan Teknik Elektro Terapan), vol. 11, no. 3, pp. 2830–7062, 2023, doi: 10.23960/jitet.v11i3%20s1.3348.
Y. W. S. Putra et al., Pengantar Aplikasi Mobile. Penerbit Widina, 2023.
P. Arsi, P. Subarkah, and B. A. Kusuma, “Analisis Sentimen Game Genshin Impact pada Play Store Menggunakan Naive Bayes Clasifier,†JURITEK (Jurnal Ilmiah Teknik Mesin, Elektro Dan Komputer), vol. 3, no. 1, pp. 161–170, 2023, doi: 10.51903/juritek.v3i1.1962.
T. P. Rajagukguk and K. Sofianto, “Simulakra Hiperrealitas Dan Reproduksi Tanda Gim PUBG,†Metahumaniora, vol. 10, no. 1, pp. 118–136, 2020, doi: 10.24198/metahumaniora.v10i1.22239.
N. Harahap, “Tindak Pidana Jual Beli Game Online Di Masa Pandemi,†Jurnal Al-Maqasid: Jurnal Ilmu Kesyariahan dan Keperdataan, vol. 6, no. 2, pp. 209–221, 2020, doi: 10.24952/almaqasid.v6i2.3435.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,†CESS (Journal of Computer Engineering, System and Science), vol. 5, no. 2, pp. 293–298, 2020, doi: 10.24114/cess.v5i2.18186.
C. F. Hasri and D. Alita, “Penerapan Metode Naive Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,†Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 145–160, 2022, doi: 10.33365/jatika.v3i2.2026.
A. Safira, A. S. Masyarakat…ï®, and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,†Jurnal Sistem Informasi, vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.
S. U. Dian and A. Erfina, “Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes,†2022. doi: 10.30645/j-sakti.v6i1.456.
F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring dengan Algoritma Naïve Bayes Classifier,†2022. doi: 10.26418/jlk.v5i1.79.
M. Khoirul, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi BRImo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,†2023. doi: 10.36040/jati.v7i1.6373.
S. Alpin Rizaldi, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi JMO (Jamsostek Mobile) Pada Google Play Store Mengguna Metode Naive Bayes,†Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 109–117, 2023, doi: 10.55123.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes,†Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
I. R. Afandi, F. Noor, H., A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes.†2022
J. Florensius Sianipar, Y. R. Ramadhan, and I. Jaelani, “Kajian Ilmiah Informatika dan Komputer,†Media Online), vol. 4, no. 1, pp. 360–367, 2023, doi: 10.30865/klik.v4i1.1033.
A. Dwiki, A. Putra, and S. Juanita, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN,†Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
S. M. Permataning Tyas, B. S. Rintyarna, and W. Suharso, “The Impact of Feature Extraction to Naïve Bayes Based Sentiment Analysis on Review Dataset of Indihome Services,†Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 1–10, Apr. 2022, doi: 10.31849/digitalzone.v13i1.9158.
G. A. BUNTORO, R. ARIFIN, G. N. SYAIFUDDIIN, A. SELAMAT, O. KREJCAR, and H. FUJITA, “Implementation of a Machine Learning Algorithm for Sentiment Analysis of Indonesia‘s 2019 Presidential Election,†IIUM Engineering Journal, vol. 22, no. 1, pp. 78–92, 2021, doi: 10.31436/IIUMEJ.V22I1.1532.
N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, Feb. 2021, doi: 10.29207/resti.v5i1.2587.
A. Muzaki and A. Witanti, “Sentiment Analysis Of The Community In The Twitter To The 2020 Election In Pandemic Covif-19 By Method Naive Bayes,†Jurnal Teknik Informatika (Jutif), vol. 2, no. 2, pp. 101–107, Mar. 2021, doi: 10.20884/1.jutif.2021.2.2.51.
S. H. Ramadhani and M. I. Wahyudin, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,†Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 4, p. 2022, 2022, doi: 10.35870/jti.
J. Khatib Sulaiman, P. Perppu Cipta Kerja Nur Muhammad Farhan, B. Setiaji, and U. Amikom Yogyakarta, “Komparasi Metode Naive Bayes dan SVM pada Sentimen Twitter Mengenai,†Indonesian Journal of Computer Science Attribution, vol. 12, no. 5, pp. 2023–2718, 2023, doi: 10.33022/ijcs.v12i5.3375.
M. Ramadhan, B. Anwar, R. Gunawan, and R. Kustini, “Sistem Pakar Untuk Mendiagnosa Penyakit Pada Tanaman Kopi Menggunakan Metode Teorema Bayes,†Journal Of Science And Social Research, vol. 4, no. 2, pp. 115–121, 2021, doi: 10.54314/jssr.v4i2.533.
U. Yudatama et al., Memahami Teknologi Informasi: Prinsip, Pengembangan, dan Penerapan. Kaizen Media Publishing, 2023.



