Penerapan Algoritma Naïve Bayes Terhadap Klasifikasi Penerima Bantuan Program Keluarga Harapan (PKH)

Amelia Irsyada, Elin Haerani, Muhammad Irsyad, Fitri Wulandari, Liza Afriyanti

Abstract


Poverty in Indonesia is one of the complex social issues. As a manifestation of the government's concern about poverty in the country, various assistance programs have been established to target the impoverished population. One such program aimed at alleviating poverty in Indonesia is the Family Hope Program (Program Keluarga Harapan or PKH). PKH is a conditional cash transfer program provided to the impoverished community. The manual selection process for aid recipients is considered less than ideal, leading to issues of improper distribution. In this study, the Naïve Bayes algorithm is applied to classify PKH aid recipients in the Bungaraya Subdistrict, Siak Regency, as part of the government's efforts to tackle poverty. The dataset used consists of 560 records, including data on existing PKH aid recipients and potential recipients from various villages in the Bungaraya Subdistrict for the year 2022. The attributes considered in this research include age, income, number of dependents, dependents attending school, dependents with disabilities, housing status, floor type, and wall type. The highest accuracy obtained through calculations on Google Colab is 99% for an 80:20 ratio, while the accuracy obtained using RapidMiner is 94%.

Keywords


Poverty; Family of Hope Program; Data Mining; Classification; Naïve Bayes Algorithm

Full Text:

PDF

References


BADAN PUSAT STATISTIK, “Profil Kemiskinan di Indonesia Maret 2023,†2023. https://www.bps.go.id/pressrelease/2023/07/17/2016/profil-kemiskinan-di-indonesia-maret-2023.html (accessed Jul. 12, 2023).

N. Apriani, D. Tampubolon, and Y. Maulida, “Analisis Pelaksanaan Program Keluarga Harapan ( Pkh ) Dalam Meningkatkan Ekonomi Masyarakat Miskin ( Studi Pada Kecamatan Tenayan Raya Kota Pekanbaru ),†vol. 5, no. 2, pp. 132–138, 2023.

D. Utami and P. A. R. Devi, “Klasifikasi Kelayakan Penerima Bantuan Program Keluarga Harapan (Pkh) Menggunakan Metode Weighted Naïve Bayes Dengan Laplace Smoothing,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 4, pp. 1373–1384, 2022, doi: 10.29100/jipi.v7i4.3592.

Menteri Sosial Republik Indonesia, Peraturan Menteri Sosial Republik Indonesia Nomor 1 Tahun 2018 Tentang Program Keluarga Harapan, no. 1. 2018, pp. 430–439.

A. Arifin, W. Handoko, and Z. Efendi, “Implementasi Metode Naive Bayes Untuk Klasifikasi Penerima Program Keluarga Harapan,†J-Com (Journal Comput., vol. 2, no. 1, pp. 21–26, 2022, doi: 10.33330/j-com.v2i1.1577.

N. Nuryanti, “Pemanfaatan Bantuan Program Keluarga Harapan untuk Menyukseskan Wajib Belajar XII Tahun di Kecamatan Pusako Siak,†Indones. J. Islam. Educ. Manag., vol. 2, no. 1, p. 26, 2019, doi: 10.24014/ijiem.v2i1.7122.

D. . U. and M. Mesran, “Analisis Komparasi Metode Klassifikasi Data Mining dan Reduksi Atribut pada Data Set Penyakit Jantung,†J. MEDIA Inform. BUDIDARMA, vol. 4, no. 2, pp. 437–444, 2020.

M. Kamber and J. Han, Data Mining: Concepts and Techniques : Concepts and Techniques. 2018.

N. I. Nella, N. Y. Setiawan, and ..., “Klasifikasi Penerima Bantuan Program Keluarga Harapan menggunakan Algoritme Decision Tree C4. 5 (Studi Kasus: Desa Mlirip Kabupaten Mojokerto),†… Teknol. Inf. dan …, vol. 6, no. 3, pp. 1332–1339, 2022, [Online]. Available: https://jptiik.multi.web.id/index.php/j-ptiik/article/view/10801%0Ahttps://jptiik.multi.web.id/index.php/j-ptiik/article/download/10801/4769.

C. Prianto, Ema Ainun Novia, Woro Isti Rahayu, Sistem Perbandingan Algoritma K-Means Dan Naive Bayes Untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan. Bandung: Kreatif Industri Nusantara, 2020.

N. Alfiah and P. S. Informasi, “Klasifikasi Penerima Bantuan Sosial Program Keluarga Harapan Menggunakan Metode Naive Bayes,†vol. XVI, pp. 32–40, 2021.

T. A. Pratiwi, M. Irsyad, R. Kurniawan, S. Agustian, and B. S. Negara, “Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan,†CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 1, p. 139, 2021, doi: 10.24114/cess.v6i1.22555.

P. M. Yudhi and D. Ismiyana Putri, “Pemanfaatan Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI,†J. Tekno Kompak, vol. 16, no. 2, pp. 176–187, 2022.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,†JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.

M. Y. H. S. Dinda Ayu Pratiwi, Rolly Maulana Awangga, Seleksi Calon Kelulusan Tepat Waktu Mahasiswa Teknik Informatika Menggunakan Metode Naive Bayes. Bandung: Kreatif Industri Nusantara, 2020.

J. Homepage et al., “IJIRSE: Indonesian Journal of Informatic Research and Software Engineering Naïve Bayes Classifier (NBC) Algorithm Analysis for Prediction Medical Device Sales,†vol. 3, no. 2, pp. 119–126, 2023.

A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,†J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 15–21, 2020, doi: 10.47970/siskom-kb.v4i1.169.

D. Hasanudin Sirait., Rini Mayasari., Nono Heryana., Metode Dan Penerapan Sistem Pakar. Get prees Indonesia, 2023.

Kuncahyo Setyo Nugroho, “Condusion Matrix untuk Evaluasi Model pada Supervised Learning,†Medium, 2019. .

M. L. P. Putra, “Menghitung Akurasi Dengan Confusion Matrix,†Medium, 2020.




DOI: https://doi.org/10.30865/json.v5i2.7203

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Amelia Irsyada, Elin Haerani, Muhammad Irsyada, Fitri Wulandari, Liza Afriyanti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.