Analisis Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis dan K-Means Clustering

Authors

  • Shinta Permata Sari Universitas Islam Negeri Sumatra Utara, Medan
  • Raissa Amanda Putri Universitas Islam Negeri Sumatra Utara, Medan

DOI:

https://doi.org/10.30865/json.v5i2.7180

Keywords:

Analysis, Data Visualization, Exploratory Data Analysis, K-Means Clustering, Sale

Abstract

Many innovations in the retail sector are closely related to digitalization and technological advances. The value of sales data is increasing as a resource for businesses in today's digital era. Sales data consists of details about the items sold, the clients they serve, sales patterns, and other elements that influence how well a business operates. However, effectively handling and understanding vast and complex sales data can be difficult and confusing. So with this problem the author will determine the annual sales level of the products that are most widely marketed by applying Exploratory Data Analysis (EDA) and the K-Means Clustering Algorithm, the method used is to determine the sales level based on the attributes used, the sales level will later be divided into 3, namely clusters 1 is high, cluster 2 is medium and cluster 3 is low. Based on the results of the EDA and K-Means methods, the results of a sales comparison for 4 years have a average value, indicating that sales in 2019 have large average values between 2020, 2021 and 2022. From the visualization results it can be concluded that there are 27 products in the cluster-1 category, 10 products in the cluster-2 category, and 5 products in the cluster-3 category.

Author Biography

Shinta Permata Sari, Universitas Islam Negeri Sumatra Utara, Medan

Prodi Ilmu Komputer

References

W. Hastomo, B. S. A. Karno, Sudjiran, D. Arif, and E. S. Moreta, “Exloratory Data Analysis Untuk Data Belanja Pelanggan dan Pendapatan Bisnis,†Infotekmesin, vol. 13, no. 2, pp. 314–321, 2022, doi: 10.35970/infotekmesin.v13i2.1547.

P. Shukaku, “Sekilas Shukaku,†2014. http://www.shukaku.co.id/about_sekilasshukaku.html.

M. E.-K. Kesuma and R. Iskandar, “Analisis Toko dan Asal Toko Fashion Pria di Shopee Menggunakan Data Scrapping dan Exploratory Data Analysis,†Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, p. 127, 2022, doi: 10.24843/mite.2022.v21i01.p17.

M. Harahap, F. Rozi, Y. Yennimar, and S. D. Siregar, “Analisis Wawasan Penjualan Supermarket dengan Data Science,†Data Sci. Indones., vol. 1, no. 1, pp. 1–7, 2021, doi: 10.47709/dsi.v1i1.1173.

D. Aryanti and J. Setiawan, “Visualisasi Data Penjualan dan Produksi PT Nitto Alam Indonesia Periode 2014-2018,†vol. IX, no. 2, pp. 86–91, 2018.

A. Wibowo, K. Faisah, and Y. Devianto, “Analisa Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis Pada PT. Telkominfra,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2292–2304, 2022, doi: 10.35957/jatisi.v9i3.2737.

M. Harahap, Y. Lubis, and Z. Situmorang, “Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering,†Data Sci. Indones., vol. 1, no. 2, pp. 76–88, 2022, doi: 10.47709/dsi.v1i2.1348.

S. Oktaviani and A. Bahtiar, “Implementasi Algoritma K-Means Dalam Pengelompokan Data,†vol. 2, no. 1, pp. 188–196, 2023.

A. Mukhid, METODOLOGI PENELITIAN PENDEKATAN KUANTITATIF. Surabaya: CV. Jakad Media Publishing, 2021.

J. Beno, A. Silen, and M. Yani, “DAMPAK PANDEMI COVID-19 KEGIATAN EKSPOR IMPOR,†Saintek Marit., vol. 22, no. 2, pp. 120–125, 2022.

F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,†J. Ilm. Inform., vol. 9, no. 02, pp. 75–81, 2021, doi: 10.33884/jif.v9i02.3755.

A. M. Sinaga and D. B. Arianto, “Analisis Consumer Behaviour Dalam Pembelian Wines Di Perusahaan Ifood,†J. Pijar, vol. 2, pp. 63–74, 2023, [Online]. Available: https://e-journal.naureendigition.com/index.php/pmb/article/view/745%0Ahttps://e-journal.naureendigition.com/index.php/pmb/article/download/745/281.

F. V. P. Samosir, P. M. Loudry, and D. A. Erik, “Exploratory Data Analysis terhadap Kepadatan Penumpang Kereta Rel Listrik,†vol. 7, pp. 449–467, 2021.

F. Amin, D. S. Anggraeni, and Q. Aini, “Penerapan Metode K-Means dalam Penjualan Produk Souq.Com,†Appl. Inf. Syst. Manag., vol. 5, no. 1, pp. 7–14, 2022, doi: 10.15408/aism.v5i1.22534.

N. Silalahi, “Penentuan Strategi Promosi Universitas Budi Darma Menggunakan Algoritma K-Means Clustering,†TIN Terap. Inform. Nusant., vol. 1, no. 1, pp. 40–46, 2020.

I. M. Rian Yuliawan, D. Care Khrisne, and P. Arya Mertasana, “Penerapan Algoritma K-Means Clustering dalam Penentuan Nilai Huruf pada Permainan Susun Kata Bahasa Bali,†J. SPEKTRUM, vol. 6, no. 3, p. 87, 2019, doi: 10.24843/spektrum.2019.v06.i03.p12.

M. S. Nawawi, F. Sembiring, and A. Erfina, “Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris,†Semin. Nas. Teknol. Inf. dan Komunikasi-2021, pp. 789–797, 2021, [Online]. Available: http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/1837%0Ahttp://prosiding.unipma.ac.id/index.php/SENATIK/article/viewFile/1837/1723.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,†Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.

D. P. Hidayatullah, R. I. Rokhmawati, and ..., “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan (Studi Pada …,†… Inf. dan Ilmu …, vol. 2, no. 8, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1769.

B. D. Mudzakkir, “Pengelompokan Data Penjualan Produk Pada Pt Advanta Seeds Indonesia Menggunakan Metode K-Means,†J. Mhs. Tek. Inform., vol. 2, no. 2, pp. 34–40, 2019.

Downloads

Published

2023-12-31

How to Cite

Sari, S. P., & Putri, R. A. (2023). Analisis Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis dan K-Means Clustering. Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), 423–433. https://doi.org/10.30865/json.v5i2.7180