Klasifikasi Sinyal EEG Untuk Mengenali Jenis Emosi Menggunakan Recurrent Neural Network

 Aspirani Utari (Universitas Sriwijaya, Palembang, Indonesia)
 (*)Dian Palupi Rini Mail (Universitas Sriwijaya, Palembang, Indonesia)
 Winda Kurnia Sari (Universitas Sriwijaya, Palembang, Indonesia)
 Tommy Saputra (Universitas Sumatera Selatan, Palembang, Indonesia)

(*) Corresponding Author

Submitted: December 15, 2023; Published: December 26, 2023

Abstract

This research focuses on in-depth exploration and analysis of the application of two types of Recurrent Neural Network (RNN), namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The two models are drilled with the same parameters, consist of three layer, use the relu activation function, and apply 1 dropout level. In order to compare the performance of the two, experiments were carried out using five groups of datasets for training and performance evaluation purposes. The evaluation includes metrics such as accuracy, recall, F1-score, and area under the curve (AUC). The dataset used is Eeg Emotion which contains 2458 unique variables. In terms of performance, LSTM succeeded in outperforming GRU in the task of classifying emotional data based on EEG signals. On the other hand, GRU shows advantages in accelerating the training process compared to LSTM. Although the accuracy of both methods is almost similar in all data divisions, in the evaluation of the ROC curve, the LSTM model demonstrates superiority with a more optimal curve compared to GRU.

Keywords


Long Short-Term Memory; Gated Recurrent Unit; Emotion Classification; EEG Signals

Full Text:

PDF


Article Metrics

Abstract view : 291 times
PDF - 107 times

References

J. J. Bird, “Sebuah Studi tentang Klasifikasi Kondisi Mental menggunakan Antarmuka Otak- Mesin berbasis EEG,” pp. 795–803, 2018.

M. Egger, M. Ley, and S. Hanke, “Emotion Recognition from Physiological Signal Analysis: A Review,” Electron. Notes Theor. Comput. Sci., vol. 343, pp. 35–55, 2019, doi: 10.1016/j.entcs.2019.04.009.

A. N. Rohman, E. Utami, and S. Raharjo, “Deteksi Kondisi Emosi pada Media Sosial Menggunakan Pendekatan Leksikon dan Natural Language Processing,” Eksplora Inform., vol. 9, no. 1, pp. 70–76, 2019, doi: 10.30864/eksplora.v9i1.277.

D. O. Bos, “EEG-based Emotion The Influence of Visual and Auditory Stimuli Recognition,” IEEE Trans. Biomed. Eng., vol. 57, no. 7, pp. 1798–1806, 2010.

Y. P. Lin et al., “EEG-based emotion recognition in music listening,” IEEE Trans. Biomed. Eng., vol. 57, no. 7, pp. 1798–1806, 2010, doi: 10.1109/TBME.2010.2048568.

M. Asadur Rahman, M. Foisal Hossain, M. Hossain, and R. Ahmmed, “Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal,” Egypt. Informatics J., vol. 21, no. 1, pp. 23–35, 2020, doi: 10.1016/j.eij.2019.10.002.

W. L. Mao, H. I. K. Fathurrahman, Y. Lee, and T. W. Chang, “EEG dataset classification using CNN method,” J. Phys. Conf. Ser., vol. 1456, no. 1, 2020, doi: 10.1088/1742-6596/1456/1/012017.

J. J. Bird, C. D. Buckingham, and D. R. Faria, “Machine Translated by Google Klasifikasi Sentimen Emosional Mental dengan Antarmuka Mesin Otak berbasis EEG” 2022.

H. H. Jasper, “ETRI Journal - 2022 - Agarwal - Electroencephalography‐based imagined speech recognition using deep long short‐term memory.Ing.pdf.” 2022.

et al Guo, “Generating Sequences With Recurrent Neural Networks,” pp. 1–43, 2016, [Online]. Available: http://arxiv.org/abs/1308.0850

M. Coskun, O. YILDIRIM, A. UÇAR, and Y. DEMIR, “an Overview of Popular Deep Learning Methods,” Eur. J. Tech., vol. 7, no. 2, pp. 165–176, 2017, doi: 10.23884/ejt.2017.7.2.11.

P. N. S. Thomas, G. S. Radha, and S. T. George, “Klasifikasi sinyal EEG menggunakan LSTM dan algoritma jaringan saraf yang,” vol. 0, 2019.

C. García-Vicente, G. C. Gutiérrez-Tobal, J. Jiménez-García, A. Martín-Montero, D. Gozal, and R. Hornero, “ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis,” Comput. Biol. Med., vol. 167, no. September, 2023, doi: 10.1016/j.compbiomed.2023.107628.

Y. Jiao, Y. Deng, Y. Luo, and B. L. Lu, “Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks,” Neurocomputing, vol. 408, pp. 100–111, 2020, doi: 10.1016/j.neucom.2019.05.108.

H. Lerogeron, R. Picot-Clémente, L. Heutte, and A. Rakotomamonjy, “Learning an autoencoder to compress EEG signals via a neural network based approximation of DTW,” Procedia Comput. Sci., vol. 222, pp. 448–457, 2023, doi: 10.1016/j.procs.2023.08.183.

R. Zeghlache, M. A. Labiod, and A. Mellouk, “Driver vigilance estimation with Bayesian LSTM Auto-encoder and XGBoost using EEG/EOG data,” IFAC-PapersOnLine, vol. 55, no. 8, pp. 89–94, 2022, doi: 10.1016/j.ifacol.2022.08.015.

M. N. van Stigt, E. A. Groenendijk, H. A. Marquering, J. M. Coutinho, and W. V. Potters, “High performance clean versus artifact dry electrode EEG data classification using Convolutional Neural Network transfer learning,” Clin. Neurophysiol. Pract., vol. 8, pp. 88–91, 2023, doi: 10.1016/j.cnp.2023.04.002.

J. J. Bird, A. Ekart, C. D. Buckingham, and D. R. Faria, “Mental emotional sentiment classification with an eeg-based brain-machine interface.” The International Conference on Digital Image and Signal Processing (DISP’19), Springer, 2019.

J. J. Bird, L. J. Manso, E. P. Ribiero, A. Ekart, and D. R. Faria, “A study on mental state classification using eeg-based brain-machine interface.” 9th International Conference on Intelligent Systems, IEEE, 2018.

A. Kumar and R. R. (nee Khemchandani), Attentional Recurrent Neural Networks for Sentence Classification, vol. 757. Springer Singapore, 2019. doi: 10.1007/978-981-13-1966-2.

G. Weiss, Y. Goldberg, and E. Yahav, “On the Practical Computational Power of Finite Precision RNNs for Language Recognition.” arXiv preprint arXiv:1805.04908, 2018.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sinyal EEG Untuk Mengenali Jenis Emosi Menggunakan Recurrent Neural Network

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Aspirani Utari, Dian Palupi Rini, Winda Kurnia Sari, Tommy Saputra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.