Analisis Sentimen Tentang Penggunaan Galon Bebas BPA di Indonesia Menggunakan Algoritma Support Vector Machine
DOI:
https://doi.org/10.30865/json.v5i2.7101Keywords:
Support Vector Machine, BPA, Naïve Bayes, Sentiment Analysis, Crossvalidation DataAbstract
This research employs the Support Vector Machine algorithm to classify sentiment in comments on the X, Youtube, and Tiktok platforms regarding the use of BPA-free water gallons in Indonesia. From a total of 1200 data points, post-labeling, 772 data points were obtained, with 552 classified as positive and 220 as negative. The experimental results reveal that SVM achieves an accuracy of 96.15%, while Naïve Bayes achieves an accuracy of 84.55%. These findings indicate that SVM is effective in classifying sentiment with a high accuracy rate, providing valuable insights for manufacturers, government entities, and consumers regarding the use of BPA in water gallons in Indonesia. This study contributes to a better understanding of the role of social media in shaping public opinion and policies related to environmental and health issues.References
R. Budi Syahputra Siregar, L. Rohani, and R. Devianty, “Analisis Penggunaan Media Sosial Instagram Terhadap Komunikasi Pembangunan Di Kota Medan,†SIBATIK J. J. Ilm. Bid. Sos. Ekon. Budaya, Teknol. dan Pendidik., vol. 2, no. 3, pp. 1047–1054, 2023, doi: 10.54443/sibatik.v2i3.720.
E. H. Sciences and NIH, “National Toxicology Program, US Department of Health and Human Services,†Natl. Toxicol. Progr., no. 08, pp. 11–13, 2015, [Online]. Available: http://ntp.niehs.nih.gov/about/%0Ahttps://ntp.niehs.nih.gov/ntp/ohat/bisphenol/bisphenol.pdf
R. T. Zoeller et al., “European Medicines Agency Conflicts With the European Food Safety Authority (EFSA) on Bisphenol A Regulation,†J. Endocr. Soc., vol. 7, no. 9, pp. 1–4, 2023, doi: 10.1210/jendso/bvad107.
A. P. Ayudhitama and U. Pujianto, “Analisa 4 Algoritma Dalam Klasifikasi Liver Menggunakan Rapidminer,†J. Inform. Polinema, vol. 6, no. 2, pp. 1–9, 2020, doi: 10.33795/jip.v6i2.274.
J. A. Saputra and S. A. Aklani, “Analisis Komparasi Algoritma K-Nearest Neighbor Dan Support Vector Machine Dengan Pendekatan Multi Dataset,†J. Ilm. Betrik, pp. 415–421, 2022, [Online]. Available: https://ejournal.pppmitpa.or.id/index.php/betrik/article/view/50%0Ahttps://ejournal.pppmitpa.or.id/index.php/betrik/article/download/50/32
F. Syah, H. Fajrin, A. N. Afif, M. R. Saeputra, D. Mirranty, and D. D. Saputra, “Analisa Sentimen Terhadap Twitter IndihomeCare Menggunakan Perbandingan Algoritma Smote, Support Vector Machine, AdaBoost dan Particle Swarm Optimization,†J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 7, no. 1, pp. 53–58, 2023, doi: 10.35870/jtik.v7i1.686.
R. Fahlapi et al., “Analisa Sentimen Vaksinasi Covid-19 Dengan Metode Support Vector Machine Dan Naïve Bayes Berbasis Teknik Smote,†J. Inform. Kaputama, vol. 6, no. 1, pp. 57–63, 2022, doi: 10.59697/jik.v6i1.136.
M. Rafly, A. Fattah, and M. Kamayani, “Analisis Sentimen Ulasan Pelanggan Online Ubi Madu Cilembu Abah Nana Menggunakan Algoritma Naïve Bayes,†J. Sist. Komput. dan Inform., vol. 5, no. September, pp. 11–21, 2023, doi: 10.30865/json.v5i1.6646.
M. Dogucu and M. Çetinkaya-Rundel, “Web Scraping in the Statistics and Data Science Curriculum: Challenges and Opportunities,†J. Stat. Educ., vol. 0, no. 0, pp. 1–24, 2020, doi: 10.1080/10691898.2020.1787116.
D. T. Hermanto, A. Setyanto, and E. T. Luthfi, “Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online,†Creat. Inf. Technol. J., vol. 8, no. 1, p. 64, 2021, doi: 10.24076/citec.2021v8i1.264.
P. Dengan, M. Saw, M. I. Thohir, S. I. Mulyana, and F. Sembiring, “Analisis Sentimen Aplikasi Dompet Digital Pada Google,†vol. 5, no. 2, pp. 202–213, 2023.
Jimmy, E. H. Hermaliani, and L. Kurniawati, “Analisis Klasifikasi Sentimen Pengguna Media Sosial Twitter Terhadap Penundaan Pemilu Presiden Tahun 2024,†J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 2, pp. 570–579, 2023, doi: 10.35870/jimik.v4i2.243.
D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24–33, 2021, doi: 10.57152/malcom.v1i1.20.
A. Andreyestha and Q. N. Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,†Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.
M. I. Amal, E. S. Rahmasita, E. Suryaputra, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Isu Kebocoran Data Kartu Identitas Ponsel di Twitter,†J. Tek. Inform. dan Sist. Inf., vol. 8, no. 3, pp. 645–660, 2022, doi: 10.28932/jutisi.v8i3.5483.
R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,†JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.
N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),†Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.
M. Kantardzic, DATA MINING Conepts, Models, Methods, and Algorithms, 3rd ed. 2020.
M. Fansyuri, “Analisa algoritma klasifikasi k-nearest neighbor dalam menentukan nilai akurasi terhadap kepuasan pelanggan (study kasus pt. Trigatra komunikatama),†Humanika J. Ilmu Sos. Pendidikan, dan Hum., vol. 3, no. 1, pp. 29–33, 2020.
I. H.Witten, E. Frank, M. A.Hall, and C. J.Pal, Data Mining Practical Machine Learning Tools and Techniques., 4th ed. 2016.
N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 123–131, 2021, doi: 10.29207/resti.v5i1.2587.
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.
I. F. PUTRA, “Preprocessing the Indonesian Hate & Abusive Text,†Kaggle, 2019. kaggle.com/code/ilhamfp31/preprocessing-the-indonesian-hate-abusive-text
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

