Klasifikasi Sentimen Masyarakat Terhadap Prabowo Subianto Bakal Calon Presiden 2024 di Twitter Menggunakan Naïve Bayes Classifier

 (*)Raja Zaidaan Putera Dwitama Mail (Universitas Islam Negri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Yusra Yusra (Universitas Islam Negri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Muhammad Fikry (Universitas Islam Negri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Febi Yanto (Universitas Islam Negri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Elvia Budianita (Universitas Islam Negri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: December 4, 2023; Published: December 29, 2023

Abstract

The Indonesian President who has served for 2 consecutive terms cannot nominate again to become President. The public's attitude towards the three presidential candidates, Prabowo Subianto, Anies Baswedan, and Ganjar Pranowo, who are predicted to run for the 2024 presidential election, is also a matter for netizens' opinions from which conclusions can be drawn. Testing will be carried out in this research using information collected from tweets posted by Twitter users. Naïve Bayes Classifier is a technique that will be applied for sentiment assessment. In the upcoming presidential election, this research will be a source when determining the presidential choice. 2100 tweets with the search keywords "Presidential Candidate" and "Prabowo Subianto" are data collected by dividing 1050 positive data and 1050 negative data. Then implementation was carried out using Google Colab starting from data processing (cleaning, case folding, tokenizing, normalization, negation handling, stopword removal, stemming) followed by classification using the Naïve Bayes Classifier. According to test findings using the Confusion Matrix with three experimental test data 90:10, 80:20 and 70:30. Obtained the highest accuracy results of 89%, with a precision value of 89.7%, 88.6% recall and 88.9% f1-score in the 90:10 trial test.

Keywords


Presidential Candidates; Sentiment Classification; Naïve Bayes Classifier; Prabowo Subianto; Twitter

Full Text:

PDF


Article Metrics

Abstract view : 287 times
PDF - 70 times

References

S. D. Agusti, S. Y. Dahda, N. Hidayah, and A. T. Tektonika, “Analisis Sentiment Isu Pilpres 2019 Dengan Menggunakan Algoritma Naive Bayes,” J. Voice Informatics, vol. 10, no. 1, pp. 1–10, 2021.

Nadir, W. Y. Wardani, and A. Purwandi, “Urgensi Pendidikan Politik Menyongsong Pemilihan Umum Presiden Dan Wakil Presiden Indonesia Tahun 2024 Untuk Menciptakan Pemilihan Umum Yang Jujur Dan Adil,” J. Pendidik. dan Konseling, vol. 4, no. 6, pp. 1349–1358, 2022.

A. Junaidi, “Peluang dan Tantangan Pesta Demokrasi 2024 dan Jaminan Perlindungan Sosial Ekonomi Lingkungan Hidup dicermati . Beberapa abad lalu , manusia belum memikirkan akibat dari pemanfaatan alam,” J. Huk. Samudra Keadilan, vol. 1, no. 1, pp. 23–30, 2024.

S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” J. Media Inform. Budidarma, vol. 4, no. 3, p. 552, 2020, doi: 10.30865/mib.v4i3.2140.

N. A. Azmi, A. T. Fathani, D. P. Sadayi, I. Fitriani, and M. R. Adiyaksa, “Social Media Network Analysis (SNA): Identifikasi Komunikasi dan Penyebaran Informasi Melalui Media Sosial Twitter,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1422, 2021, doi: 10.30865/mib.v5i4.3257.

I. Riswanto and R. H. Laluma, “Klasifikasi Kelayakan Pinjaman Pada Koperasi Karyawan Menggunakan Metode Naïve Bayes Classifier Berbasis Web,” Infotronik J. Teknol. Inf. dan Elektron., vol. 5, no. 1, pp. 11–16, 2020, doi: 10.32897/infotronik.2020.5.1.2.

A. Handayani et al., “Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 53–63, 2023, doi: 10.47065/josh.v5i1.4379.

R. Yanuarti, “Analisis Media Sosial Twitter Terhadap Topik Vaksinasi Covid-19,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 6, no. 2, pp. 121–130, 2021, doi: 10.32528/justindo.v6i2.5503.

S. Rahayu and J. J. Purnama, “Klasifikasi Konsumsi Energi Industri Baja Menggunakan Teknik Data Mining,” J. Teknoinfo, vol. 16, no. 2, p. 395, 2022, doi: 10.33365/jti.v16i2.1984.

A. Apriani, H. Zakiyudin, and K. Marzuki, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta,” J. Bumigora Inf. Technol., vol. 3, no. 1, pp. 19–27, 2021, doi: 10.30812/bite.v3i1.1110.

M. K. Maulidina, “Analisis Sentimen Komentar Warganet Terhadap Postingan Instagram Menggunakan Metode Naive Bayes Classifier dan TF-IDF,” Naskah Publ. Univ. Teknol. Yogyakarta, pp. 1–15, 2020.

D. Sandi, “Klasifikasi Opini Dengan Menggunakan Algoritma K-Nearest Neighbor Pada Berita Vaksinasi Di Twitter,” Nuansa Inform., vol. 16, no. 1, pp. 156–160, 2022, doi: 10.25134/nuansa.v16i1.5343.

A. H. Setianingrum, “Implementasi Algoritma Multinomial Naive Bayes Classifier,” J. Tek. Inform., vol. 10, no. 2, pp. 109–118, 2018, doi 10.15408/jti.v10i2.6822..

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

N. A. Rakhmawati, M. I. Aditama, R. I. Pratama, and K. H. U. Wiwaha, “Analisis Klasifikasi Sentimen Pengguna Media Sosial Twitter Terhadap Pengadaan Vaksin COVID-19,” J. Inf. Eng. Educ. Technol., vol. 4, no. 2, pp. 90–92, 2020, doi: 10.26740/jieet.v4n2.p90-92.

A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.

L. Hermawan and M. B. Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,” J. Transform., vol. 17, no. 2, p. 188, 2020, doi: 10.26623/transformatika.v17i2.1705.

B. H. Hayadi, “Sistem Informasi Geografis,” Apl. dan Anal. Lit. Fasilkom UI, vol. m, no. 1998, pp. 7–34, 2018.

N. M. A. J. Astari, D. G. H. Divayana, and G. Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.

A. R. Satria, S. Adinugroho, and Suprapto, “Analisis Sentimen Ulasan Aplikasi Mobile menggunakan Algoritma Gabungan Naïve Bayes dan C4.5 berbasis Normalisasi Kata Levenshtein Distance,” vol. 4, no. 11, pp. 4154–4163, 2020.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Masyarakat Terhadap Prabowo Subianto Bakal Calon Presiden 2024 di Twitter Menggunakan Naïve Bayes Classifier

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Raja Zaidaan Putera Dwitama, Yusra Yusra, Muhammad Fikry, Febi Yanto, Elvia Budianita

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.