Clustering Pecandu Narkoba Menggunakan Algoritma K-Means Clustering

Ikhlasul Amal, Raissa Amanda Putri

Abstract


With the rise of increasingly sophisticated technology in this time of globalization, it is exceptionally simple for the more extensive local area to manage exchanges (drugs). For this reason, the government is constantly trying to stop the spread of drugs among Indonesian people by using any media, ranging from verbal invitations, banners, posters, videos and photos displayed in schools, government and public places. The maltreatment of opiates and perilous medications (drugs) in Indonesia as of late has turned into a difficult issue and has arrived at a condition of concern with the goal that it has turned into a public issue.In order to make it easier for BNN to conduct monitoring and counseling to areas where there are many drug addicts, it is necessary to cluster data on drug addicts in Medan city. To solve the problem, it can be solved by clustering drug addicts in Medan city using the K-Means Clustering Algorithm. The data used comes from the BNN of North Sumatra Province, the data used is data on drug addicts in Medan City in 2020-2023. The purpose of clustering drug addict data in Medan city is to find out areas that are very high, high, low and very low levels of drug addicts.This study found that there are 2 sub-districts with the highest level of drug addiction, 7 sub-districts with a high level of addiction, 7 sub-districts with a low level of drug addiction, and 5 sub-districts with a lowest level of addiction.

Keywords


Drugs; Clustering; RapidMiner; Subdistrict; K-Means

Full Text:

PDF

References


M. Wisnu Pradana Sugiarto S.Pd, “Perangi Narkoba, Selamatkan Generasi Muda,†2023. https://bpsdm.pu.go.id/webbalaiwil6/artikel/3-perangi-narkoba-selamatkan-generasi-muda

W. Sugiarto, “Perangi Narkoba, Selamatkan Generasi Muda,†2023.

P. Hariyanto,Bayu, “Pencegahan dan Pemberantasan Peradaran Narkoba di Indonesia,†J. Daulat Huk., vol. 1, no. 1, pp. 201–211, 2018.

S. R. Nasrudin, M. Taufik Makarao, “OPTIMALISASI PENANGGULANGAN TINDAK PIDANA NARKOTIKA MELALUI PROGRAM PENCEGAHAN PEMBERANTASAN PENYALAHGUNAAN DAN PEREDARAN GELAP NARKOBA (P4GN) STUDI KASUS DI WILAYAH POLRES CIMAHI,†vol. 8, no. 2, pp. 86–109, 2022.

A. A. F. Lubis, “Data Pemprov Sumut: 8 dari 10 Remaja di Warnet Pemakai Narkoba,†2021. [Online]. Available: https://news.detik.com/berita/d-5837132/data-pemprov-sumut-8-dari-10-remaja-di-warnet-pemakai-narkoba

I. B. T. Setiaawan, I. A. P. Widiati, and D. G. Sudibya, “Peranan Badan Narkotika Nasional (BNN) Dalam Upaya Pencegahan Terhadap Tindak Pidana Narkotika,†J. Analog. Huk., vol. 2, no. 3, pp. 361–365, 2020, doi: 10.22225/ah.2.3.2517.361-365.

N. Widjiyati, “Perancangan Dan Pengukuran Gis Penyebaran Pengguna Narkoba Di Wilayah Sumut Menggunakan Metode Matrix Error,†INFOS Journal-Information Syst. J., vol. 2, no. 1, pp. 46–55, 2019.

H. D. Tampubolon, S. Suhada, M. Safii, S. Solikhun, and D. Suhendro, “Penerapan Algoritma K-Means dan K-Medoids Clustering untuk Mengelompokkan Tindak Kriminalitas Berdasarkan Provinsi,†J. Ilmu Komput. dan Teknol., vol. 2, no. 2, pp. 6–12, 2021, doi: 10.35960/ikomti.v2i2.703.

Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,†CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 192, 2020, doi: 10.24114/cess.v5i2.18519.

E. D. Madyatmadja, M. N. Ridho, A. R. Pratama, M. Fajri, and L. Novianto, “Penerapan Visualisasi Data Terhadap Klasifikasi Tindak Kriminal Di Indonesia,†Infotech J. Technol. Inf., vol. 8, no. 1, pp. 61–68, 2022, doi: 10.37365/jti.v8i1.127.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,†J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

U. Nugroho, Metodologi Penelitian Kuantitatif Pendidikan Jasmani. 2021.

I. Ahmad, S. Samsugi, and Y. Irawan, “Implementasi Data Mining Sebagai Pengolahan Data,†J. Teknoinfo, vol. 16, no. 1, p. 46, 2022, [Online]. Available: http://portaldata.org/index.php/portaldata/article/view/107

K. Annisa, B. S. Ginting, and M. A. Syari, “Penerapan Data Mining Pengelompokan Data Pengguna Air Bersih Berdasarkan Keluhannya Menggunakan Metode Clustering Pada PDAM Langkat,†J. Ilmu Komput. dan Inform. Vol., vol. 6, no. 1, pp. 113–129, 2022.

S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,†Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.

I. M. Rian Yuliawan, D. Care Khrisne, and P. Arya Mertasana, “Penerapan Algoritma K-Means Clustering dalam Penentuan Nilai Huruf pada Permainan Susun Kata Bahasa Bali,†J. SPEKTRUM, vol. 6, no. 3, p. 87, 2019, doi: 10.24843/spektrum.2019.v06.i03.p12.

N. Silalahi, “Penentuan Strategi Promosi Universitas Budi Darma Menggunakan Algoritma K-Means Clustering,†TIN Terap. Inform. Nusant., vol. 1, no. 1, pp. 40–46, 2020.

R. D. Syahbiddin and D. A. B. L. Mailangkay, “‘Towards Economic Recovery by Accelerating Human Capital and Digital Tranformation’ Perbanas Institute-SNAP_2021_FULL PAPER_41 ANALISIS DATA RISIKO NASABAH PADA BUSINESS CONTROL (BC) TOOLS MENGGUNAKAN RAPID MINER,†Dies Natalis Ke-52 Perbanas Inst. Semin. Nas. Perbanas Inst., pp. 178–189, 2021.

H. Latiar, “Apa Itu Visualisasi Data?,†Pustaka Unilak, 2023. https://pustaka.unilak.ac.id/apa-itu-visualisasi-data/




DOI: https://doi.org/10.30865/json.v5i2.7009

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ikhlasul Amal, Raissa Amanda Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.