Perbandingan Metode Dempster Shafer Dan Teorema Bayes Dalam Sistem Pakar Mendiagnosa Moyamoya Disease

 Naufal Rifqi (Universitas Nasional, Jakarta, Indonesia)
 (*)Agus Iskandar Mail (Universitas Nasional, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: September 21, 2023; Published: September 30, 2023

Abstract

The main aim of this research is to compare two analytical approaches, namely the Dempster-Shafer Method and the Bayes Theorem, in the context of a system developed for diagnosing Moyamoya disease. Moyamoya is a rare condition involving the narrowing or blocking of blood vessels in the brain, which can lead to disrupted blood flow and an increased risk of stroke. In the medical field, diagnosing Moyamoya disease is a crucial initial step for appropriate treatment planning. The Dempster-Shafer Method is an approach used to address uncertainty and combine uncertain information into a conclusion. On the other hand, the Bayes Theorem is a statistical principle that connects the probability of a hypothesis before and after new evidence emerges. Both of these approaches are vital in the medical diagnostic process. In this study, both methods are implemented in an expert system specifically developed for diagnosing Moyamoya disease. Data from Moyamoya cases are used to evaluate the performance of both methods. Performance measurement is conducted by observing diagnostic accuracy, computational time, and resource usage. The results of this research provide valuable insights into the effectiveness and performance of the Dempster-Shafer Method and the Bayes Theorem in medical applications, particularly in diagnosing Moyamoya disease. Strengths and weaknesses of each approach are revealed, aiding in understanding situations where each method is most suitable. The Dempster-Shafer Method is effective in dealing with complex uncertainties and combining uncertain evidence. Meanwhile, the Bayes Theorem excels in probability calculations. The implications of this research are important in developing more advanced medical expert systems. In the medical realm, where diagnostic decisions impact patient care, a better understanding of these approaches helps in selecting the most appropriate method for specific situations. The results of comparing both methods indicate that the Dempster-Shafer Method yields a high probability of around 91%, indicating a substantial likelihood that the patient is suffering from this disease. Conversely, the Bayes Theorem yields a low probability of around 22%, suggesting a relatively small likelihood that the patient has Moyamoya Disease.

Keywords


Expert System; Dempster Safer; Bayes Theorem; Moya-Moya Disease

Full Text:

PDF


Article Metrics

Abstract view : 277 times
PDF - 254 times

References

Sulindawaty and M. Lestari, “Sistem Pakar Mendiagnosa Penyakit Stroke Transient Ischaemic Attack(TIA) Dengan Menggunakan Metode Dempster Shafer,” J. Sist. Inf. dan Teknol. Jar., vol. 2, no. 2, pp. 25–30, 2021, [Online]. Available: http://e-jurnal.pustakatimur.org/index.php/sisfotekjar/article/view/28.

I. L. K. Panjaitan, E. Panggabean, and Sulindawaty, “Analisis Perbandingan Metode Dempster Shafer dengan Metode Certainty Factor Untuk Mendiagnosa Penyakit Stroke,” J. Inform. Pelita Nusant., vol. 3, no. 1, pp. 69–74, 2018, [Online]. Available: http://e-jurnal.pelitanusantara.ac.id/index.php/JIPN/article/view/293.

J. Kanggeraldo, R. P. Sari, and M. I. Zul, “Sistem Pakar Untuk Mendiagnosis Penyakit Stroke Hemoragik dan Iskemik Menggunakan Metode Dempster Shafer,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 498–505, 2018, doi: 10.29207/resti.v2i2.268.

G. Tangkudung, R. Gunawan, R. Tumewah, and J. M. Pertiwi, “MOYAMOYA DISEASE DENGAN PERDARAHAN INTRAVENTRIKULAR PADA PASIEN USIA MUDA,” J. Sinaps, vol. 3, no. 2, pp. 13–17, 2020.

Warna, “Implementasi Algoritma Certainty Factor untuk Mendiagnosa Penyakit yang Disertai Demam,” vol. IV, pp. 129–137, 2023.

A. W. Fathurrahman, M. Thoriqulhaq, and F. Arianto, “Penerapan Machine Learning untuk Pengklasifikasian Hoaks pada Platform Media Sosial,” Senada, vol. 2022, no. Senada, pp. 66–68, 2022, [Online]. Available: https://senada.upnjatim.ac.id/index.php/senada/article/view/48%0Ahttps://senada.upnjatim.ac.id/index.php/senada/article/download/48/26.

H. Nahumury, A. Mulyani, and H. Nurdin, “Sistem Pendukung Keputusan Mendiagnosa Penyakit Virus Corona (Covid-19) Menggunakan Metode Dempster-Shafer,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 4, no. 4, pp. 207–214, 2020.

A. R. MZ, I. G. P. S. Wijaya, and F. Bimantoro, “Sistem Pakar Diagnosa Penyakit Kulit pada Manusia dengan Metode Dempster Shafer,” J. Comput. Sci. Informatics Eng., vol. 4, no. 2, pp. 129–138, 2020, doi: 10.29303/jcosine.v4i2.285.

A. U. Bani and F. Nugroho, “Sistem Pakar Dalam Diagnosa Penyakit Tuberkulosis Otak Menggunakan Metode Certainty Factor,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1170–1174, 2020, doi: 10.30865/mib.v4i4.2507.

M. Aldjawad, S. Andryana, and A. Andrianingsih, “Penerapan Metode Perbandingan Dempster-Shafer dengan Certainty Factor pada Aplikasi Sistem Pakar Deteksi Dini Penyakit Alzheimer pada Lansia Berbasis Web,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 2, p. 144, 2021, doi: 10.35870/jtik.v5i2.206.

R. Rachman, “Sistem Pakar Deteksi Penyakit Refraksi Mata Dengan Metode Teorema Bayes Berbasis Web,” J. Inform., vol. 7, no. 1, pp. 68–76, 2020.

P. S. Ramadhan, “Sistem Pakar Pendiagnosaan Dermatitis Imun Menggunakan Teorema Bayes,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 3, no. 1, pp. 43–48, 2018.

S. Murni and F. Riandari, “Penerapan Metode Teorema Bayes Pada Sistem Pakar Untuk Mendiagnosa Penyakit Lambung,” J. Teknol. Dan Ilmu Komput. Prima, vol. 1, no. 2, pp. 166–172, 2018.

C. Muhamasri, “Sistem Pakar Untuk Diagnosa Awal Penyakit Lambung Dempster-Shafer Berbasis Web,” J. SANTI - Sist. Inf. dan Tek. Inf., vol. 1, no. 3, pp. 9–13, 2023, doi: 10.58794/santi.v1i3.332.

D. Aldo, “Sistem Pakar Diagnosis Hama Dan Penyakit Bawang Merah Menggunakan Metode Dempster Shafer,” Komputika J. Sist. Komput., vol. 9, no. 2, pp. 85–93, 2020.

C. Nas, “Sistem Pakar Diagnosa Penyakt Tiroid Menggunakan Metode Dempster Shafer,” J. Teknol. Dan Open Source, vol. 2, no. 1, pp. 1–14, 2019.

P. S. Hasibuan and M. I. Batubara, “Penerapan Metode Dempster Shafer Dalam Mendiagnosa Penyakit Faringitis,” J. Media Inform. Budidarma, vol. 3, no. 1, p. 59, 2019, doi: 10.30865/mib.v3i1.1061.

A. R. Mz, I. G. P. S. Wijaya, and F. Bimantoro, “Sistem pakar diagnosa penyakit kulit pada manusia dengan metode dempster shafer,” J. Comput. Sci. Informatics Eng., vol. 4, no. 2, pp. 129–138, 2020.

J. Coding et al., “Implementasi Metode Dempster Shafer Pada Sistem Pakar Diagnosa Infeksi Penyakit Tropis Berbasis Web,” J. Coding, vol. 06, no. 03, pp. 97–106, 2018.

E. Sagala, J. Hutagalung, S. Kusnasari, and Z. Lubis, “Penerapan Sistem Pakar Dalam Mendiagnosis penyakit Tanaman Carica Papaya di UPTD. Perlindungan Tanaman Pangan dan Hortikultura Menggunakan Metode Dempster Shafer,” J. CyberTech, vol. 1, no. 1, pp. 95–103, 2021, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jct/index.

R. Simalango and A. S. Sinaga, “Diagnosa Penyakit Ikan Hias Air Tawar Dengan Teorema Bayes,” vol. 3, pp. 43–50, 2019.

N. Sulardi and A. Witanti, “Sistem Pakar Untuk Diagnosis Penyakit Anemia Menggunakan Teorema Bayes,” J. Tek. Inform., vol. 1, no. 1, pp. 19–24, 2020.

N. A. Sagat and A. S. Purnomo, “Sistem Pakar Diagnosa Penyakit Mata Menggunakan Metode Teorema Bayes,” J. Pendidik. dan Teknol. Indones., vol. 1, no. 8, pp. 329–337, 2021.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Metode Dempster Shafer Dan Teorema Bayes Dalam Sistem Pakar Mendiagnosa Moyamoya Disease

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Naufal Rifqi, Agus Iskandar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.