Prediksi Harga Tandan Buah Segar dengan Algoritma K-Nearest Neighbor

 (*)Silvi Joya Arditna Br Bukit Mail (Universitas Islam Negeri Sumatera Utara, Medan, Indonesia)
 Rakhmat Kurniawan R. (Universitas Islam Negeri Sumatera Utara, Medan, Indonesia)

(*) Corresponding Author

Submitted: September 21, 2023; Published: September 29, 2023

Abstract

Palm oil and its derivative products are a source of foreign exchange for this country, because efforts are needed to maintain and develop the sustainability of palm oil as a potential natural resource. The company carries out statistical analysis on the factors inhibiting the previous month's harvest with a correction value of 5% – 12%. However, this kind of analysis still produces inaccurate prediction results, this is because the calculation process still involves estimation techniques from personal experience, looking at previous production patterns and other determining factors such as land area, principal amount and planting age. As a result, prediction targets often experience errors and production results are excessive or less than the target. Therefore, better predictive calculations are needed in determining palm oil production targets. Accurate predictions can help companies make decisions to increase production output. To carry out forecasting, it is necessary to apply the K-Nearest Neighbor Algorithm which can be used to predict palm oil prices in the future. Based on the results of data mining calculations using palm oil FFB prices from 2018 to 2023 (May 2023), it was concluded that the prediction of palm oil FFB prices in the 67th month (July 2023) had an accuracy level of 10,667 with k=3 and 19,200 with k=5.

Keywords


Predictions; Prices; TBS; Data Mining; K-Nearest Neighbor

Full Text:

PDF


Article Metrics

Abstract view : 219 times
PDF - 43 times

References

I. Watson, Applying case-based reasoning: techniques for enterprise systems. Morgan Kaufmann Publishers Inc., 1998.

M. Kuhn and K. Johnson, Feature engineering and selection: A practical approach for predictive models. Chapman and Hall/CRC, 2019.

Kusrini and E. T.L, Algoritma dan Data Mining. Yogyakarta: Andi, 2009.

K. Liu, Z. Li, C. Yao, J. Chen, K. Zhang, and M. Saifullah, “Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting,” Int. J. Sediment Res., vol. 31, no. 2, pp. 149–158, 2016.

R. I. Ndaumanu and M. R. Arief, “Analisis prediksi tingkat pengunduran diri mahasiswa dengan metode K-Nearest Neighbor,” Yogyakarta: STMIK AMIKOM Yogyakarta, 2014.

H.-I. Eum, S. P. Simonovic, and Y.-O. Kim, “Climate change impact assessment using k-nearest neighbor weather generator: case study of the Nakdong River basin in Korea,” J. Hydrol. Eng., vol. 15, no. 10, pp. 772–785, 2010.

R. Hutami and E. Z. Astuti, “Implementasi Metode K-Nearest Neighbor Untuk Prediksi Penjualan Furniture Pada CV. Octo Agung Jepara,” Univ. Dian Nuswantoro Semarang, vol. 3, no. 2, pp. 40–51, 2016.

A. G. Novianti and D. Prasetyo, “Penerapan algoritma k-nearest neighbor (k-nn) untuk prediksi waktu kelulusan mahasiswa,” in Seminar Nasional APTIKOM (SEMNASTIKOM), 2017, pp. 108–113.

H. Risman, D. Nugroho, and Y. R. W. Utami, “Penerapan Metode K-Nearest Neighbor Pada Aplikasi Penentu Penerima Beasiswa Mahasiswa Di STMIK Sinar Nusantara Surakarta,” J. Teknol. Inf. dan Komun., vol. 3, no. 2, 2015.

F. Hermawan and H. Agung, “Implementasi Metode K-Nearest Neighbor Pada Aplikasi Data Penjualan PT. Multitek Mitra Sejati,” J. Sains dan Teknol., vol. 4, no. 2, 2017.

T. Tundo, “Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Fuzzy Tsukamoto Dengan Rule Yang Terbentuk Menggunakan Decision Tree Reptree,” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 9, no. 2, pp. 253–265, 2020.

A. A. Thoha, “Pengelolaan Panen Kelapa Sawit (Elaeis guineensis Jacq.) di Kebun Adolina, Sumatera Utara,” Bul. Agrohorti, vol. 5, no. 2, pp. 157–166, 2017.

S. K. Pal and S. C. K. Shiu, Foundations of soft case-based reasoning. John Wiley & Sons, 2004.

M. Furqan and H. L. S. Sriani, “Klasifikasi daun bugenvil menggunakan gray level co-occurrence matrix dan K-Nearest Neighbor,” J. CoreIT, vol. 6, no. 1, pp. 22–29, 2013.

E. Elnahrawy, “Log-based chat room monitoring using text categorization: A comparative study,” in The International Conference on Information and Knowledge Sharing, US Virgin Islands, 2002.

W. F. Ardianti, S. Sriani, and A. H. Hasugian, “Application of color extraction methods and k-nearest neighbor to determine maturity avocado butter,” J. Tek. Inform. CIT Medicom, vol. 15, no. 1, pp. 9–20, 2023.

C. Romero, S. Ventura, P. G. Espejo, and C. Hervás, “Data mining algorithms to classify students,” in Educational data mining 2008, 2008.

M. Sarkar and T.-Y. Leong, “Application of K-nearest neighbors algorithm on breast cancer diagnosis problem.,” in Proceedings of the AMIA Symposium, 2000, p. 759.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Harga Tandan Buah Segar dengan Algoritma K-Nearest Neighbor

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Silvi Joya Arditna Br Bukit, Rakhmat Kurniawan R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.