Analisis Sentimen Ulasan Pelanggan Online Ubi Madu Cilembu Abah Nana Menggunakan Algoritma Naïve Bayes

 Muhammad Rafly Al Fattah Zain (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)
 (*)Mia Kamayani Mail (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: August 11, 2023; Published: September 25, 2023

Abstract

This research aims to analyze the sentiment of online customer reviews for Ubi Madu Cilembu Abah Nana using the Naïve Bayes algorithm. The study has two main objectives: to classify the sentiment analysis of reviews into positive and negative categories regarding the service and products of Ubi Madu Cilembu Abah Nana, as well as to evaluate the accuracy level of the final classification results. The data was collected from online food delivery applications such as Gofood, Grabfood, and Shopeefood. The data used in this study amounts to 259 entries, with 310 positive and 49 negative data points. After conducting experiments, an accuracy result of 86.29% was obtained in Experiment 1 using the Split Data operator, and an accuracy of 86.12% was achieved in Experiment 2 utilizing Cross Validation with the assistance of language experts. The findings of this research indicate that the Naïve Bayes algorithm can be employed to classify customer sentiment towards the service and products of Ubi Madu Cilembu Abah Nana with a significantly high accuracy rate. These results can be valuable for Ubi Madu Cilembu Abah Nana in enhancing their service and product quality based on customer feedback. Additionally, this study also contributes to the field of sentiment analysis and natural language processing by applying classification algorithms to customer review data.

Keywords


Sentiment Analysis; Naïve Bayes; RapidMiner; Classification; Ubi Madu Cilembu Abah Nana

Full Text:

PDF


Article Metrics

Abstract view : 790 times
PDF - 355 times

References

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

A. A. Arifiyanti and E. D. Wahyuni, “Smote: Metode Penyeimbang Kelas Pada Klasifikasi Data Mining,” SCAN - J. Teknol. Inf. dan Komun., vol. 15, no. 1, pp. 34–39, 2020, doi: 10.33005/scan.v15i1.1850.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.

P. S. Dewi, C. K. Sastradipraja, and D. Gustian, “Sistem Pendukung Keputusan Kenaikan Jabatan Menggunakan Metode Algoritma Naïve Bayes Classifier,” J. Teknol. dan Inf., vol. 11, no. 1, pp. 66–80, 2021, doi: 10.34010/jati.v11i1.3593.

S. Febriani and H. Sulistiani, “Analisis Data Hasil Diagnosa Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5,” 89Jurnal Teknol. dan Sist. Inf., vol. 2, no. 4, pp. 89–95, 2021.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Data Mining: Practical Machine Learning Tools and Techniques,” Data Min. Pract. Mach. Learn. Tools Tech., pp. 1–621, 2016.

W. Parasati, F. A. Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naïve Bayes Classifier,” vol. 4, no. 4, 2020.

N. Saurina, T. Rahayuningsih, and L. Retnawati, “Analisis Sentimen Ulasan Pelanggan Batik Ecoprint Menggunakan Naïve Bayes Dan KNN Classifier,” vol. 9, no. 2, 2022.

F. N. Hasan and M. Dwijayanti, “Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier,” J. Linguist. Komputasional, vol. 4, no. 2, pp. 52–58, 2021, doi: https://doi.org/10.26418/jlk.v4i2.61.

I. Darmawan, O. N. Pratiwi, F. R. Industri, and U. Telkom, “Analisis Sentimen Ulasan Produk Toko Online Rubylicious Untuk,” vol. 7, no. 2, pp. 7026–7034, 2020.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

A. Surahman, A. F. Octaviansyah, and D. Darwis, “Ekstraksi Data Produk E-Marketplace Sebagai Strategi Pengolahan Segmentasi Pasar Menggunakan Web Crawler,” Sistemasi, vol. 9, no. 1, p. 73, 2020, doi: 10.32520/stmsi.v9i1.580.

O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022, doi: 10.46229/jifotech.v2i1.330.

A. Aziz, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, p. 115, 2022.

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

S. Mujahidin, B. Prasetio, and M. C. C. Utomo, “Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga BBM Pada Komentar Youtube Dengan Metode Gaussian naïve bayes,” Voteteknika (Vocational Tek. Elektron. dan Inform., vol. 10, no. 3, p. 17, 2022, doi: 10.24036/voteteknika.v10i3.118299.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

M. Hofmann and R. Klinkenberg, Data Mining and Knowledge Discovery Series Edited by. 2014.

T. Wiratama Putra, A. Triayudi, and A. Andrianingsih, “Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 20–26, 2022, doi: 10.35870/jtik.v6i1.368.

RAVI SHAH, “Guide to Tokenizers and Preprocessing,” Kaggle, 2022. https://www.kaggle.com/competitions/feedback-prize-english-language-learning/overview (accessed Aug. 05, 2023).

AMED, “Indonesian stemmer / stopwords,” Kaggle, 2021. https://www.kaggle.com/competitions/shopee-product-matching/overview (accessed Aug. 22, 2023).

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Muhammad Rafly Al Fattah Zain, Mia Kamayani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.