Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ancaman Resesi Ekonomi 2023 dengan Metode Naïve Bayes Classifier

 (*)Dea Ropija Sari Mail (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Yusra Yusra (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Muhammad Fikry (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Febi Yanto (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Fitri Insani (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: June 7, 2023; Published: July 2, 2023

Abstract

Economic recession is a condition in which the economic turnover of a country changes to slow or bad that can last for years as a result of the growth of the Gross Domestic Product (GDP) a country decreases over two decades significantly. Early warnings of the emergence of a global recession become a concern for all countries in the world, even global recessions also have a major impact on Indonesia. Such as declining public spending due to decreasing incomes, increasing unemployment, increasing poverty, and many of whom have to accept PHK or salary cuts. Economic strengthening will be important in minimizing these threats, this research needs to be done to see the response of the public to the threat of economic recession. Twitter provides a container to users to comment on the problem of the economy recession 2023 which can be used as sentiment classification information to know positive and negative comments. This research uses the naive bayes classifier algorithm. In this study there are seven main processes, namely data collection, manual labelling, processing, feature weighing (tf-idf), tresholding, naive bayes method classification, testing. From the 1408 comments data on Twitter about the threat of a 2023 economic recession. Based on the results of the classification, using 2 testing models namely data balance and non-balance data obtained the best balance data test results with the highest accuracy result with the process of classification using algortima naïve bayes classifier resulted in accurateness of 78% obtainable by using a comparison of 90% training data and 10% test data.

Keywords


Recession; Sentiment Classification; Naïve Bayes Classifier; Twitter; Economy

Full Text:

PDF


Article Metrics

Abstract view : 544 times
PDF - 226 times

References

S. Ardila, S. Annatasha, V. Aulya D. Kustiawati, J. Pendidikan and D. Konseling, “Studi Literatur : Mempersiapkan Investasi untuk Hadapi Isu Resesi Ekonomi di Indonesia,”2022.

S. Blandina, A. Noor Fitrian, and W. Septiyani, “Strategi Menghindarkan Indonesia dari Ancaman Resesi Ekonomi di Masa Pandemi,” Efektor, vol. 7, no. 2, pp. 181–190, Dec. 2020, doi: 10.29407/e.v7i2.15043.

A. N. Made Ayu Juli, D. G. Hendra Divayana, and G. Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, Nov. 2020, doi: 10.30864/jsi.v15i1.332.

A. Wibisono, S. Dadi Rizkiono, and A. Wantoro, “Filtering Spam Email Menggunakan Metode Naive Bayes,” Telefortech, (Journal Of Telematics and Information Technology), vol. 1, no.1,pp 9-17 Nov. 2020.

L. Aji Andika and P. Amalia Nur Azizah, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, pp May 2019.

W. A. Prabowo and C. Wiguna, “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM,” Jurnal Media Informatika Budidarma, vol. 5, no. 1, p. 149, Jan. 2021, doi: 10.30865/mib.v5i1.2604.

A. Turmudi Zy, A. Nugroho, A. Rivaldi, and I. Afriantoro, “Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes,” Jurnal Teknologi Informatika dan Komputer, vol. 8, no. 2, pp. 202–213, Sep. 2022, doi: 10.37012/jtik.v8i2.1240.

Fitriani, E. Utami, and A. Dwi Hartantoand, “Analisis Sentimen Masyarakat Terhadap Pelaksanaan P3K Guru dengan Algoritma Naïve Bayes Classifier Dan Decision Tree“ Teknologi informasi dan multimedia, vol. 3, no. 1, Mei 2022.

B. Gunawan, H. Sasty, P., E. Esyudha, P., “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” vol. 4, no. 2, pp. 17–29, 2018, [Online]. Available: www.femaledaily.com

B. Mas Pintoko and K. Muslim, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier.” e-Proceeding of Engineering, vol. 5, no.3 pp Desember 2018.

A. M. Anjani, A. A. Chamid, and A. C. Murti, “Analisis Sentimen Kaum Lgbt Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” Jurnal Teknik Iinformatika vol. 1, no. 2, pp. Juli, Halaman 1~8, 2022.

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 231–237, Apr. 2021, doi: 10.29207/resti.v5i2.2698.

I. Kurnia Syuriadi and W. Astuti, “Klasifikasi Teks Multi Label pada Hadis dalam Terjemahan Bahasa Indonesia Berdasarkan Anjuran, Larangan dan Informasi menggunakan TF-IDF dan KNN,” e-Proceeding of Engineering, vol. 06, no. 02, Agustus 2019.

M. Alif, I. Aulia, and Y. E. Kurniawati, “Pengembangan Model Klasifikasi Dokumen Artikel Teks Berita Olahraga dan Bukan Olahraga dalam Bahasa Indonesia Menggunakan Algoritma Support Vector Machine,” Jurnal Mahasiswa Institut Teknologi dan Kalbis vol. 8, no. 2, Mei 2022.

E. T. Handayani and A. Sulistiyawati, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan Dengan Metode Klasifikasi Naive Bayes,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 3, pp. 32–37, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

L. A. Mullen, K. Benoit, O. Keyes, D. Selivanov, and J. Arnold, “Fast, Consistent Tokenization of Natural Language Text,” J Open Source Softw, vol. 3, no. 23, p. 655, Mar. 2018, doi: 10.21105/joss.00655.

R. Ghaniaviyanto Nur, “Indonesian Online News Topics Classification using Word2Vec and K-Nearest Neighbor,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1083–1089, Dec. 2021, doi: 10.29207/resti.v5i6.3547.

A. Rafid Rizqullah, A. Wedhasmara, R. Izwan Heroza, A. Putra, and P. Putra, “Analisis Masalah Pada Data Review Aplikasi Terhadap Layanan E-Commerce Menggunakan Metode Text Classification.” Jurnal TEKNO KOMPAK, vol. 16, no. 1, 2022.

A. Deka and M. Sharma, “A Comparative Analysis of Vegetation Radiometric Indices for Classification of Bambusa Tulda using Satellite Imagery,” International Journal of Computer Sciences and Engineering Open Access, vol. 7, no. 1, Desember 2019.

B. Kaida Palma, D. Triantoro Murdiansyah, and W. Astuti, “Klasifikasi Teks Artikel Berita Hoaks Covid-19 dengan Menggunakan Algotrima K-Nearest Neighbor.” E-proceeding of Engineering, vol. 8, no. 5, Oktober 2021.

B. K. Hananto, A. Pinandito, and A. P. Kharisma, “Penerapan Maximum TF-IDF Normalization Terhadap Metode KNN Untuk Klasifikasi Dataset Multiclass Panichella Pada Review Aplikasi Mobile,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer vol. 2, no 12, Desember 2018.

Y. A. Rahman, “Vaksinasi Massal Covid-19 sebagai Sebuah Upaya Masyarakat dalam Melaksanakan Kepatuhan Hukum (Obedience Law),” Khazanah Hukum, vol. 3, no. 2, pp. 80–86, Apr. 2021, doi: 10.15575/kh.v3i2.11520.

M. I. Fikri, T. S. Sabrila, Y. Azhar, and U, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter” Jurnal Stiki Informatika, vol. 10, no. 02, Desember 2020.

R. Parlika, S. Ilham Pradika, A. M. Hakim, and R. N. M. Kholilul, “Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob,” Jurnal Ilmiah Teknologi Informasi dan Robotika, vol 02, no. 02, Desember 2020.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dea Ropija Sari, Yusra Yusra, Muhammad Fikry, Febi Yanto, Fitri Insani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.