Penerapan Metode Naïve Bayes Classifier Pada Klasifikasi Sentimen Terhadap Anies Baswedan Sebagai Bakal Calon Presiden 2024

 (*)Mar`iy Romizzidi Amly Mail (Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia)
 Yusra Yusra (Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia)
 Muhammad Fikry (Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: May 28, 2023; Published: July 2, 2023

Abstract

Anies Baswedan is a political figure who has been declared as a 2024 presidential candidate. Public opinion is a valuable source of information to analyze sentiment towards Anies Baswedan as a 2024 presidential candidate. Limited human power, emotional instability, and the length of time required are difficulties in analyzing sentiment on large amounts of data manually. Machine learning is utilized to provide convenience in sentiment classification.  This research applies the Naïve Bayes Classifier method in the classification of sentiment towards Anies Baswedan as a 2024 presidential candidate. This study aims to determine the performance of the Naïve Bayes Classifier method in the classification of sentiment towards Anies Baswedan as a 2024 presidential candidate. The dataset used was 3,400 which were labeled by crowdsourcing resulting in 2,130 positive (62.65%) and 1,270 negative (37.35%). Tests were conducted using the 10-fold cross-validation and 5-fold cross-validation methods, each consisting of two experimental scenarios, namely using an unbalanced dataset and using a balanced dataset.The Naive Bayes Classifier method produces the best model in the 10-fold cross-validation test with an accuracy of 89.76%, precision of 89.92%, recall of 89.76%, and f1-score of 89.75% on the sixth fold by determining a threshold value of 13 in an experiment using a balanced dataset consisting of 1,270 positives and 1,270 negatives with an average accuracy rate of 79.88%.

Keywords


Classification; Sentiment; Naïve Bayes Classifier; K-Fold Cross-Validation; Presidential Candidate

Full Text:

PDF


Article Metrics

Abstract view : 359 times
PDF - 174 times

References

A. Mustofa and R. Novita, “Klasifikasi Sentimen Masyarakat terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining pada Twitter,” Jurnal Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 200–208, 2022, doi: 10.47065/bits.v4i1.1628.

S. Widi, “Pengguna Media Sosial di Indonesia Sebanyak 167 Juta pada 2023,” Data Indonesia, 2023. https://dataindonesia.id/digital/detail/pengguna-media-sosial-di-indonesia-sebanyak-167-juta-pada-2023 (accessed Feb. 10, 2023).

S. Kemp, “Digital 2023: Indonesia,” Data Reportal, 2023. https://datareportal.com/reports/digital-2023-indonesia (accessed Feb. 10, 2023).

D. Soer and S. Sutrisno, “Analisis Sentimen terhadap Pemerintahan Ridwan Kamil Sebagai Gubernur Jawa Barat Menggunakan Algoritma Naïve Bayes,” in Prosiding Seminar Nasional Sains dan Teknologi (SAINTEK), 2022, pp. 77–82.

A. Rahman, “Popularitas Tokoh Politik di Indonesia,” Drone Emprit, 2022. https://pers.droneemprit.id/popularitas-tokoh-politik-di-indonesia-3/ (accessed Feb. 10, 2023).

S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 5, no. 3, pp. 279–285, 2019, doi: 10.26418/jp.v5i3.34368.

T. Yulianita, T. W. Utami, and M. Al Haris, “Analisis Sentimen dalam Penanganan Covid-19 di Indonesia Menggunakan Naive Bayes Classifier,” in Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI), 2020, pp. 235–243.

E. A. Lisangan, A. Gormantara, and R. Y. Carolus, “Implementasi Naive Bayes pada Analisis Sentimen Opini Masyarakat di Twitter terhadap Kondisi New Normal di Indonesia,” Konvergensi Teknologi dan Sistem Informasi (KONSTELASI), vol. 2, no. 1, pp. 23–32, 2022, doi: 10.24002/konstelasi.v2i1.5609.

O. Purbo, Text Mining Analisis Medsos, Kekuatan Brand & Intelejen di Internet. Yogyakarta: Andi, 2019.

I. Saputra and D. Kristiyanti, Machine Learning Untuk Pemula. Bandung: Informatika, 2022.

N. M. A. J. Astari, D. Divayana, and G. Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.

H. Harpizon, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Analisis Sentimen Komentar di YouTube tentang Ceramah Ustadz Abdul Somad Menggunakan Algoritma Naïve Bayes,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, pp. 131–140, 2022, doi: 10.32672/jnkti.v5i1.4008.

Y. S. Mahardhika and E. Zuliarso, “Analisis Sentimen terhadap Pemerintahan Joko Widodo pada Media Sosial Twitter Menggunakan Algoritma Naive Bayes Classifier,” in Prosiding Seminar Nasional Teknologi Informasi & Aplikasi Komputer (SINTAK), 2018, pp. 409–413.

M. Fatchan and H. Sugeng, “Anlisa Terpilihnya Tri Rismaharini sebagi Menteri Sosial dengan Pendekatan Algorithma Naïve Bayes,” Journal of Practical Computer Science, vol. 1, no. 2, pp. 50–57, 2021, doi: 10.37366/jpcs.v1i2.942.

T. Widowati and M. Sadikin, “Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 11, no. 2, pp. 626–636, 2020, doi: 10.24176/simet.v11i2.4568.

Y. A. Permana and H. Noviyani, “Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor dalam Melihat Analisis Sentimen terhadap Vaksinasi Covid-19,” in Prosiding Sains dan Teknologi (SAINTEK), 2022, pp. 128–134.

D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” Jurnal Sistem Informasi, Teknologi Informasi, dan Edukasi Sistem Informasi, vol. 2, no. 1, pp. 55–63, 2021, doi: 10.25126/justsi.v2i1.24.

A. Erfina and R. A. Lestari, “Sentiment Analysis of Electric Vehicles using the Naïve Bayes Algorithm,” Jurnal Sistem Informasi (SISTEMASI), vol. 12, no. 1, pp. 178–185, 2023, doi: 10.32520/stmsi.v12i1.2417.

F. Ratnawati, “Implementasi Algoritma Naive Bayes terhadap Analisis Sentimen Opini Film pada Twitter,” INOVTEK Polbeng - Seri Informatika, vol. 3, no. 1, pp. 50–59, 2018, doi: 10.35314/isi.v3i1.335.

N. Marga, A. Isnain, and D. Alita, “Sentimen Analisis tentang Kebijakan Pemerintah terhadap Kasus Corona Menggunakan Metode Naive Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 2, no. 4, pp. 453–463, 2021, doi: 10.33365/jatika.v2i4.1602.

M. M. Khoirudin, W. Wiranto, and W. Winarno, “News Opinion Mining around Universitas Sebelas Maret Using Naive Bayes Algorithm,” Jurnal Teknologi dan Informasi (ITSMART), vol. 7, no. 1, pp. 44–50, 2018, doi: 10.20961/itsmart.v7i1.21134.

D. Aryanti, “Analisis Sentimen Ibukota Negara Baru Menggunakan Metode Naïve Bayes Classifier,” Journal of Information System Research (JOSH), vol. 3, no. 4, pp. 524–531, 2022, doi: 10.47065/josh.v3i4.1944.

A. Dinar, A. Irawan, and Y. Umaidah, “Analisis Sentimen pada Pengguna Twitter terhadap Program Kampus Merdeka Menggunakan Naive Bayes,” Jurnal Mahasiswa Teknik Informatika (JATI), vol. 7, no. 1, pp. 755–760, 2023, doi: 10.36040/jati.v7i1.6552.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA Jurnal, vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.

T. Mutiara, Y. Alkhalifi, N. Mayangky, and W. Gata, “Analisis Sentimen Opini Publik Mengenai Larangan Mudik pada Twitter Menggunakan Naïve Bayes,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 6, no. 2, pp. 85–88, 2020, doi: 10.24014/coreit.v6i2.9727.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Naïve Bayes Classifier Pada Klasifikasi Sentimen Terhadap Anies Baswedan Sebagai Bakal Calon Presiden 2024

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mar`iy Romizzidi Amly, Yusra Yusra, Muhammad Fikry

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.