Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode Naive Bayes Classifier
DOI:
https://doi.org/10.30865/json.v4i4.6168Keywords:
President, Twitter, Sentiment Analysis, Naïve Bayes ClassifierAbstract
Reaction to public facts about the election of the presidential candidate Ridwan Kamil, which will later be obtained, the data is taken from Twitter based on these problems, it is necessary to do sentiment analysis research. Based on the results of this study, the classification process for the Naïve Bayes Classifier has 3 scenarios for dividing training data and test data, namely with 90%:10% training data, the test data produces an accuary value of 85.43%, a recall value of 100.00%, and a precision of 85.33%. For training data 80%: 20% of the test data produces an accuracy value of 86.38%, a recall of 100.00% and a precision value of 86.38% and for data on the distribution of training data 70%: 30% of the test data produces an accuary value of 84.29 %, 100.00% recall and 84.29% precision. From the tweet data that has been used, there are 1262 positive comments and 242 negative comments. These results prove that the Naïve Bayes classifier is very good for conducting sentiment analysis on Twitter comments about the 2024 presidential candidate Ridwan Kamil. The naïve Bayes classifier process gets the highest accuracy value of 86.38% by dividing the training data 80%:20% test data.
References
A. Nugroho, “Analisis Sentimen Pada Media Sosial Twitter Menggunakan Naive Bayes Classifier Dengan Ekstrasi Fitur N-Gram,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 2, no. 2, p. 200, 2018, doi: 10.30645/j-sakti.v2i2.83.
S. R. I. Rezeki, “Penggunaan sosial media twitter dalam komunikasi organisasi (studi kasus pemerintah provinsi dki jakarta dalam penanganan covid-19),†J. Islam. Law Stud., vol. 04, no. 02, pp. 63–78, 2020.
M. Raihan, F. Sya’ Bani |, F. Sya’ Bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 dengan Algoritma Naïve Bayes,†J. Ris. Komputer), vol. 9, no. 2, pp. 2407–389, 2022, doi: 10.30865/jurikom.v9i2.3989.
P. Dan and W. Presiden, “Presiden dan wakil presiden republik indonesia,†2019.
rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Tugas Akhir Tugas Akhir,†J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.
D. Ikasari and Widiastuti, “Sentiment Analysis Review Novel ‘Goodreads’ Berbahasa Indonesia Menggunakan Naive Bayes Classifier,†Semin. Nas. Ris. dan Inov. Teknol. (SEMNAS RISTEK) 2021, vol. 5, pp. 760–765, 2021, [Online]. Available: http://www.proceeding.unindra.ac.id/index.php/semnasristek/article/view/5040
E. M. Sipayung, H. Maharani, and I. Zefanya, “Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier,†J. Sist. Inf., vol. 8, no. 1, pp. 2355–4614, 2016, [Online]. Available: http://ejournal.unsri.ac.id/index.php/jsi/index
D. Rustiana and N. Rahayu, “Analisis sentimen pasar otomotif mobil:,†J. SIMETRIS, vol. 8, no. 1, pp. 113–120, 2017.
S. Farisi Setya Hadi, Jondri, and K. Muslim Lhaksmana, “Analisis Sentimen menggunakan Recurrent Neural Network Terkait Isu Anies Baswedan Sebagai Calon Presiden 2024,†vol. 10, no. 2, pp. 1682–1690, 2022.
A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM,†vol. 7, no. 1, pp. 11–18, 2024.
M. L. Pradana, V. A. Pratama, R. A. Ramdhani, and P. P. Nugrahagung, “Memaknai TWK KPK Dalam Reproduksi Wacana Dengan Pemanfaatan Modal Sosial: Studi Kasus Data Percakapan TWK KPK di Media Sosial Twitter,†J. PolGov, vol. 4, no. 2, pp. 1–49, 2022, doi: 10.22146/polgov.v4i2.3637.
Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,†Petir, vol. 15, no. 2, pp. 264–275, 2022, doi: 10.33322/petir.v15i2.1733.
B. Panjaitan and K. M. Lhaksmana, “Analisis Sentimen Publik Terhadap Calon Presiden 2019 Melalui Twitter Menggunakan Metode Naive Bayes Classifier ( Studi kasus : Pilpres 2019),†vol. 6, no. 2, pp. 9744–9752, 2019, [Online]. Available: https://www.unisbank.ac.id/ojs/index.php/sintak/article/view/6651
F. K. S. Dewi, “Klasifikasi Berita Menggunakan Metode Multinomial Naïve Bayes,†SCAN - J. Teknol. Inf. dan Komun., vol. 16, no. 3, pp. 1–8, 2021, doi: 10.33005/scan.v16i3.2870.
R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,†J. Inform., vol. 8, no. 2, pp. 111–122, 2021, doi: 10.31294/ji.v8i2.10494.
B. M. Pintoko and K. M. L., “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier,†e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2018.
M. Al Khadafi et al., “Penerapan Metode Naïve Bayes Classifier Dan Lexicon Based Untuk Analisis Sentimen Cyberbullying Pada Bpjs,†J. Mhs. Tek. Inform., vol. 6, no. 2, pp. 725–733, 2022.
P. P. O. Mahawardana, I. A. P. F. Imawati, and I. W. Dika, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘Figure Pemimpin’ Menggunakan Python,†J. Manaj. dan Teknol. Inf., vol. 12, no. 2, pp. 50–56, 2022, [Online]. Available: https://ojs.mahadewa.ac.id/index.php/jmti/article/view/2111
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

